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Abstract—WeChat is the largest social instant messaging platform in China with 1.1 billion monthly active users.“Top Stories” is a kind
of novel friend-enhanced recommendation engine in WeChat, in which users can read articles based on both their own and their
friends’ preferences. Specifically, when a user reads an article by opening it, the “click” behavior is private. Besides, if the user clicks
the “wow” button, (only) her/his direct connections will be aware of this action/preference. Based on the unique billion-scale WeChat
data, we aim to understand user preferences and wow diffusion in Top Stories at different levels. We have some interesting discoveries.
For instance, the wow probability of one user is negatively correlated with the number of connected components that are formed by
her/his active friends, but the click probability is the opposite. We further study to what extent users’ wow and click behavior can be
predicted from their social connections. To address it, we present a hierarchical graph representation learning based model ProHENE,
which is capable of capturing the structured based social observations discovered above. Our experiments show that the proposed
method can significantly improve the prediction performance compared with alternative methods.

Index Terms—Social Influence, Information Diffusion, User Behavior

1 INTRODUCTION

NFORMATION diffusion [33] has increasingly changed

from offline to online these years. There emerge many
popular social applications, such as “News Feed” in Face-
book, and “Top Stories” in WeChat, which facilitate infor-
mation diffusion greatly. Central to information diffusion is
the user trait and the social influence between users, which
has attracted many researchers working on it [11], [13], [45].

Despite the popular applications and extensive studies
of information diffusion algorithms, it is still unclear about
the inherent factors that result in different types of user
feedbacks in specific social contexts. First, how can user
attributes, the relations between users and friends, and the
local network structure influence user behavior? Second,
what are the differences between various kinds of user
feedbacks (such as “click”, “like” and “share”) w.r.t. above
factors? Such problems are still largely unexplored and far
from understood.

In this work, we study the “Top Stories” service in
WeChat—the largest social instant messaging platforms in
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Fig. 1. “Top Stories” in WeChat. Each user can view what friends
“wow”ed. If she/he also wows one article, it will be displayed to (only)
her/his friends, which forms a diffusion process. Here “active friends”
means friends who wowed the corresponding articles.

China—to understand the user behavior and the connec-
tions between user behavior and social relationships. In Top
Stories, a user can see the articles wowed by her friends,
which can be regarded as share plus like, and she can
perform the wow or click action on each article as well.
An illustration example of WeChat’s Top Stories service is
shown in Figure 1, in which each user will be shown the
articles that her friends wowed as well as those friends’
names, and she can click into the article or also wow it.
Herein, we aim at understanding users” wow and click be-
havior from different aspects, including user demographics,
social relationships, and users” ego network structures.

The research problem in this paper is related to social
influence locality [49], which targets at quantifying how
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user behavior is influenced by other users in the ego net-
works, and more broadly related to social influence [38]
and information diffusion [26], [34]. Most methods [23], [49]
address the social influence locality problem by using hand-
crafted user features and network features to predict user
behaviors. Recently, Qiu et al. [31] propose to use graph
attention networks (GAT) to learn user proximity in ego net-
works. Wang et al. [43] further consider topological features
through Weisfeiler-Lehman (WL) algorithm [7] to predict
user behavior for in-feed advertising. However, they haven’t
dug into studying potential influence factors in different
granularities, such as user demographics, and ego network
properties, based on which better prediction models can be
designed.

Through the study, we first reveal several intriguing dis-
coveries that impact user behavior at different levels. Based
on the discoveries, we then develop a unified framework
to predict users” wow and click behavior by modeling user
attributes, user relations and ego network structures.

To highlight several of our key findings, for user de-
mographics, we find that users” wow and click behavior
varies by gender and age, and the patterns become compli-
cated when cross-attribute factors are considered. For user
relations, users are likely to behave differently when their
active friends are structural holes and opinion leaders. Con-
sidering ego network properties, both wow probability and
click probability are strongly correlated with the number of
connected components formed by users’ active friends, but
they have the opposite patterns. This correlation becomes
stronger when the ego network is cleaned.

Based on these interesting discoveries, we further study
to what extent users’ behavior can be predicted from their
social connections and attributes. To this end, we propose
a hierarchical graph representation learning based model
ProHENE. Our model is closely related to and motivated
by the insights from data, which is different from many
neural network based methods. Specifically, first, to model
cross-attribute factor for users’ different attributes as the
analysis in Section 3.1 (such as user embedding and de-
mographics), we adopt factorization machine technique to
generate second-order features to model feature interactions
for each individual. Second, to remove noises in the ego
networks as the analysis in Section 3.3, ProHENE propa-
gates initial user features in the modulated spectral domain,
to generate user embeddings based on cleaned ego net-
works. Third, to model user relationships as the analysis
in Section 3.2, we adopt a new graph attention mechanism
to model feature interactions between neighbors. Fourth, to
model the connected components — hierarchical structure
of the ego networks as the analysis in Section 3.3, we
generate hierarchical representations of ego networks by
clustering nodes together and learning on the coarsened
graphs iteratively. We evaluate the proposed method on
large-scale WeChat Top Stories dataset and a public Weibo
dataset. Our experiments show that the proposed solution
can consistently outperform alternative methods.

2 BACKGROUND — TOP STORIES DATASET

Different from other news feed systems, Top Stories in
WeChat will recommend to a user those articles favored

(wowed) by her/his friends. As the example shown in
Figure 1, the recommended articles to the current user are
two articles favored by her active friends. The user can
choose to click the “wow” button so that her friends will
also be informed with the favorite. In this way, the “wow”
essentially plays an implicit diffusion role. On the other
hand, the user can also click to view the full content of
the article or simply ignore it. The dataset used in this
paper is the complete dataset of Top Stories generated from
Oct 1 to Dec 31, 2019. It consists of three parts: 1) a social
network G = {U, E'}, where U is a set of users, and E rep-
resents a set of edges recording friendships between users;
2) user attributes C' including users’ gender, age, regions
and so on; and 3) the interaction between users and articles
L = {(u,d,ts,is_like, is_click,af (u,d,ts))|u € U,d € D},
where u is the ego user, d is a displayed article in article
set D, ts is the timestamp, ¢s_like and ¢s_click are whether
u wows and clicks d, respectively, af(u,d,ts) is u’s active
friends who wowed d before timestamp t¢s. Note that an
interaction can be represented by a triplet (u, d, ts). To avoid
over-fitting, we select a subset of the data by first extracting
users who performed at least ten interactions (wow or click)
and then extracting these users’ friendship network and
their attributes. The final dataset contains 48,084,772 users,
61,252,317 articles, and 7,459,660,092 interactions.

To start with our analysis, we first provide several nec-
essary definitions which will be used later.

Definition 2.1. Connected Components (CC)'. In graph
theory, a connected component of an undirected graph G
is an induced subgraph in which any two vertices are
connected to each other by paths, and which is connected
to no additional vertices in the rest of the graph. We let CC
denote the acronym of connected components and #CC denote
the number of connected components in a graph.

Definition 2.2. Structural Hole (SH) [2]. A “structural hole”
is a term for recognizing a missing bridge in a graph.
Wherever two or more groups fail to connect, one can argue
that there is a structural hole, a missing gap waiting to be
filled. We let SH denote the acronym of structural hole.

Definition 2.3. Ego network and 7-ego network. Ego net-
work G,, = {U,, E, } is a subgraph of a static social network
G centered at the focal node (“ego”), where U, is the node
set consisting of the ego and its first-order neighbors, E,,
is the edges between nodes in U, in the original graph G.
T-ego network G], = {V/], E7} is a subgraph induced by u
and u’s 7-degree friends, V] is the node set of the subgraph
G7, and £, is the edge set of G7,.

Definition 2.4. Active Friends. In this article, we define
active friends as the friends who performed “wow” action
on an article. In WeChat Top Stories, if a user wowed an
article, his/her friends will be informed about it. However,
users’ click behavior will not shown to the friends directly.
As shown in Figure 1, the names shown below the articles
are the friends who performed “wow” action.

Definition 2.5. Active Rate. We define “active rate” to refer
to both wow probability and click probability.

1. https:/ /en.wikipedia.org/wiki/Component_(graph_theory)
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Fig. 2. Wow and click probability w.r.t. user age.

3 ANALYSIS AND DISCOVERIES

Based on the large-scale interactions between users and
articles, we investigate how users” wow and click behavior
correlates with three aspects: (1) user demographics, (2)
user relationships, and (3) ego network properties. Next, we
present these analysis results one by one.

3.1 User Demographics

Table 1, Figure 2, and Figure 3 show the probability that
people of different gender and age wow or click articles in
Top Stories. From Table 1, we can observe that males” click
probability is clearly higher than females’, while females’
wow probability is a little bit higher than males’. The
reason might be that males tend to consume content, but
females are more active in social circles. Regarding age, the
patterns are very interesting. According to our intuition,
young generations (users of the 20s and 30s) are the most
active users in our online social circles. However, in Figure
2, the wow and click probability of the 20s and 30s is the
lowest among all ages. We infer that young people might
too busy to look at the articles in detail or their “reverse
psychology” reacts to the recommended articles. Moreover,
when we consider both gender and age attributes, the
patterns become different again. In Figure 3, we find that
for people younger than 20s, males are more active than
females. However, there is a reversion for both wow and
click behavior, but at different split points (40s for wow and
60s for click), indicating that older female users are more
active than older male users. The result demonstrates that
the cross-attribute factor is more complicated.

3.2 User Relationships

For user relationships, we consider pairwise relations and
triangle relations between users and their active friends. To
eliminate other influence factors, we consider interactions
with only one friend who wowed the article for pairwise
relations, and exactly two active friends for triangle rela-
tions. We analyze user relationships from two views: user
demographics and user social roles.

(a) Wow Behavior (b) Click Behavior

Fig. 3. User wow and click probability w.r.t. users’ gender and age.

TABLE 2
Pairwise influence w.r.t. the user and the friend’s gender.

User Friend | Wow prob. | Click prob.

Male Male 0.97% 11.19%

Male Female 1.01% 9.69%
Female Male 0.93% 9.11%
Female | Female 1.06% 10.33%

Pairwise Relations w.rt. User Demographics. Table 2
shows the users’ active rate concerning pairwise relations
between ego users’ gender and friends’ gender. We observe
that for click behavior, when friends” gender is the same
as ego users’, the ego users’ click probability is higher,
which can be explained by the homophily of user interests.
However, for wow behavior, users are more likely to wow
an article when their active friends are females.

In view of ages, Figure 4 visualizes users’ wow probabil-
ity w.r.t. pairwise relations between users’ ages and friends’
ages. We have several interesting discoveries. First, when
users are young (< 40 years old), they are more influenced
by their older friends than friends of the same age group.
Second, older users are highly influenced by their friends
of the same age group. Meanwhile, they also care about
what young generations wowed, which shows the cross-
generation care, such as parents to children, managers to
subordinates, etc. The pattern of click behavior is omitted
here since it is similar to that of wow behavior.

Talking about the region, we also consider the distance
between users and their friends (incorporating users’ re-
gions). Table 3 shows the users’ active rate w.r.t. the distance
between the user and the active friend. We can see that when
the geographic distance between the ego user and the friend
is close, the wow probability and click probability of the
ego user is higher, which shows the existence of interest
homophily w.r.t. user region.

Pairwise Relations w.r.t. User Social Roles. We also study
pairwise influence between users’ social roles and friends’
social roles. Here social roles refer to users’ roles in the
social network or wow diffusion network. Table 4 shows the

TABLE 3
Pairwise influence w.r.t. the distance between the user and the friend.
User Wow prob. | Click prob.
All 1.01% 10.24%
Same province 1.05% 10.65%
Same city 1.08% 10.85%
Same district 1.19% 11.27%

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Tencent. Downloaded on April 19,2021 at 03:01:33 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINERING, SUBMISSION 2020 4

0.1000 0.0923 0.0894 0.1016 0.1003 (LHEEA0.1143 015

g
=)
= 0.0881 0.0842 0.0788 0.0777 0.0839 0.0928 0.0996 o4
2 .
g
S 0.0900 0.0877 0.0926 0.0927 0.0937 0.1008 0.1048 0.13
2 = [RBEN 0.0958 0.0983 0.1089 01138 (11 L57 (1 Lk 0.12
L N
= g -0.11
LRSI BOEP R ON67] 0.1311 0.1406 0.1426 '
=}
g - 0.10
e
%“ -0.09
N 0.1522 [0.1260 [0:1169) 0.1262 0.1357 0.1534 0.1581
%]
= -0.08
S

[10, 20) [20, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80)
Friend's age

Fig. 4. Users’ wow probability w.r.t. the user’'s age and the friend’s age.

TABLE 4
Pairwise influence w.r.t. users’ and friends’ social roles. OU: ordinary
user; OL: opinion leader.

User | Friend | Wow prob. | Click prob.
ou ou 1.06% 10.65%
ou OL 0.66% 8.11%
OL ou 0.92% 8.57%
OL OL 0.64% 7.49%

users’ active rate w.r.t pairwise relations of different social
roles: opinion leaders (OL) and ordinary users (OU). We find
opinion leaders in social networks by running PageRank
algorithm [28] on user diffusion network and then regard
users with top 1% PageRank scores as opinion leaders.
Surprisingly, we find users” wow and click probability is
higher when their active friends are not opinion leaders.
For wow behavior, the reasons might be that if an opinion
leader has wowed one article, the ego user is less willing
to publicize it because many users connected to opinion
leaders probably already knew it. For click behavior, we
think perhaps users browse Top Stories mainly for recre-
ation as WeChat is a social instant messaging platform for
friends and acquaintances. Therefore, users might care more
about what similar friends are interested in rather than what
opinion leaders pay attention to.

Besides, Table 5 shows the users’ active rate w.r.t. pair-
wise relations of different social roles: structural holes (SH)
and ordinary users (OU). Here we find cut points in users’
friendship network using Tarjan [40] algorithm to approxi-
mate structural hole users. Clearly, users” wow behavior is
highly influenced when their friends are structural holes,

TABLE 5
Pairwise influence w.r.t. users’ and friends’ social roles. OU: ordinary
user; SH: structural hole.

User | Friend | Wow prob. | Click prob.
Oou ouU 0.99% 10.26%
OU SH 1.38% 12.43%
SH OuU 2.34% 10.28%
SH SH 3.58% 10.16%
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Fig. 6. User wow and click probability w.r.t. the differences between
users’ age and friends’ age. Here the difference is calculated by “the
age of the friend minus the age of the ego user”.

which demonstrates that structural holes are critical in the
information diffusion process. Also, the wow and click
probability of ordinary users is higher if their active friends
are structural holes. For users who are structural holes,
their click probability is higher when their friends are not
structural holes, but the difference is not very significant.

Triangle Relations w.r.t. User Demographics. Here we
study how triangle relations — more complex relation-
ships, would influence ego users” behavior. For triangle
relations, we consider interactions with exactly two friends
who wowed the article. We analyze the demographics (i.e.,
gender, age, and region) of the ego users and their friends.

Figure 5 shows the users’ active rate with respect to
triangle relation between ego user’s gender and his/her two
friends” gender. From the figure, we can observe consistent
patterns of wow and click behaviors. If the two friends’
gender is the same as the ego user’s gender, the ego users’
active rate is highest. Again, this implied a high degree of
gender homophily.

Furthermore, Figure 6 shows the users’ active rate w.r.t.
the difference between the ego user’s age and the two
friends” ages. We discover that if one friend is of the same
age group and the other friend is younger than ego user,
the active rate of ego user is high. Furthermore, the color in
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the left top is darker than that of the right bottom, which
demonstrates that old users pay more attention to young
users compared with young users attending to old users.

Additionally, Figure 7 shows the users” active rate w.r.t.
the distance between the ego user and the two active friends.
Our intuition might be that if the distance between the ego
user and her two friends is close, the ego users’ active rate
is high. However, actually, if one friend is nearby, and the
other friend is more distant from the ego user, the ego user
will be more active. This kind of “attribute diversity” may
provide evidence that the wowed articles are acknowledged
by various users.

3.3 Ego Network Property

In this subsection, we study the correlation between users’
activity and their ego network property. To be precise, the
ego network is defined as the induced subgraph of users’ ac-
tive friends. We find that users” online behaviors (click and
wow) are strongly influenced by their friend circles (users in
their ego networks). We study ego network properties from
three aspects: the number of friends in the ego network, the
number of connected components (#CC) in the ego network,
#CC in the cleaned ego network (k-core subgraph).

The Number of Friends in the Ego Networks. Figure 8
shows how a user’s wow and click probability on an article
changes when the number of active friends increases. We
define the ratio of active friends by dividing a pre-defined
maximum number of friends into the actual number of
friends. It demonstrates two very different patterns w.r.t.
the two behaviors. For wow behavior, with the number
of active friends increasing, the probability that the user
wows an article also increases, roughly linearly, while for
click behavior, the probability first fluctuates a little, and

then decreases clearly after the ratio of one’s active friends
increasing to 0.4. The phenomenon could be explained by
information overload — when the number of one’ active
friends is large, the user may have many other channels
from these friends to learn about the information, such as
“Moments” or “Subscriptions” (the first is reading articles
posted by friends and the other is reading articles of sub-
scribed accounts), thus losing interest in clicking it [9]. For
wow behavior, the pattern is consistent with our intuition
that people may continue to share the hot spots to let more
and more people care about them.

The Number of Connected Components (#CC) in the Ego
Network. Following the above, we conduct another deep
analysis, named structural diversity [41], to study how the
topological structure of one’s active friends would influence
the user’s behavior. Figure 9(a) plots the probability of
a user’s behavior w.rt. the number of connected compo-
nents (#CC) of her/his active friends. Here, each connected
component can be viewed as a specific group of friends
(connected by friendships among them). The pattern is very
interesting. When the total number of active friends on an
article increasing, the user may increase the probability of
spreading the article (see Figure 8). However, when fixing
the number of active friends, ranging from 2 to 7, the
probability decreases with the increase of the number of
connected components (#CC) (see Figure 9(a)). This con-
firms the structural diversity analysis in sociology [41], [49],
which suggests that the user’s interest in sharing a piece
of information will decrease when she/he notices that the
information has already been shared by multiple different
groups of friends, since there isn’t much benefit for growing
the user’s influence when many people have shared it.
For click, it is totally different — when a user notices
that she/he has multiple different groups of friends read
an article, her/his probability of reading the articles will
quickly increase. If many friends of different circles have
wowed one article, the article quality is probably high and
has a broad audience, so the user is attracted to read it.

#CC in the Cleaned Ego Network. Although one can
have many active friends who wowed an article, different
friends may influence the ego user to different extent. For
example, friend O and the ego user perhaps became friends
at a chance, and they are not familiar with each other. Thus,
O is an outlier in the ego network who doesn’t connect to
other friends of the ego user. At this time, including friend
O in the ego network may introduce noises. Thus, we want
to first obtain the cleaned ego network, and then analyze the
correlation of its structure and ego user’s activity. To obtain
the cleaned ego network, we extract the 1-core subgraph
of the ego network formed by active friends, where 1-core
means the node in the subgraph needs to have at least one
edge with other nodes. In this way, outliers are removed
from the ego networks. Figure 9(b) plots the probability
of a user’s behavior w.r.t. #CC of one’s 1-core subgraph of
the ego network formed by active friends. Note that 1-core
ensures the connectivity of nodes in the subgraph, so some
combinations of (#Friends, #CC) pairs don’t exist, such as 7
friends with 7 CC. Comparing Figure 9(b) with Figure 9(a),
we can see that when fixing the number of active friends
(such as 7), the speed of increase or decrease of wow /click
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Fig. 9. Social influence analysis: the probability that the user wows or clicks an article conditioned on the number of connected components of

(cleaned) ego networks formed by active friends.

probability w.r.t. #CC in Figure 9(b) is obviously faster. This
difference shows that the structural topology of cleaned ego
networks probably gives a better discriminative ability to
predict ego users’ activity.

3.4 Summaries

From the above analysis, we have the following discoveries:

o Males are more likely to click but less likely to wow the articles
than females. Counterintuitively, the young generations (people
of 20s and 30s) have the lowest active rate in Top Stories.

o For pairwise user relations, there exists interest homophily
between users and friends (such as about gender and region),
but attribute diversity (such as region) also positively correlates
with users’ activity when there is more than one active friend.

o According to ego network topology, the patterns of wow and
click behavior are very different. For instance, when fixing the
number of active friends, users’ wow probability is negatively
correlated to #CC formed by active friends, but for click behav-
ior, it is the opposite. The patterns can be more significant when
the ego network is cleaned.

4 PREDICTIVE MODEL

Can we leverage the discovered patterns to predict users’
online behaviors? In this section, we first briefly formulate
the problem and then present our prediction framework.

4.1 Problem Formulation

Let GI, = {V.J,ET} be user v’ s T-ego network where
T-ego network is a subgraph induced by u and u’s 7-
degree friends, V] is the node set of the subgraph G7, and
E7 is the edge set of GJ,. The attribute matrix of users
in V] is denoted as (7. When user u is displayed with
an article d wowed (shared) by some friends at timestamp
ts, we denote an action status of user u’s ego-network as
S(udts) = 1Sw.dits) € 10,1} v € V] \ {u}}, where s, 41
is the action status of user v w.r.t. article d before timestamp
ts, here 0 means inactive and 1 means active (both denoting
wow behavior). Our goal is to quantify the wow and click
probability of ego user u after timestamp ¢s:

P(S(u,d,>ts) |G;a S(u,d,ts)a C;—) (1)

Since we analyze two different behaviors (click and
wow) of users, a straightforward idea is to leverage the
correlation between click and wow to design a joint pre-
diction model (like multi-task learning). However, there
is no evident correlation between click and wow in our
training set. According to our statistics, P(is_click, = 1) ~
P(is_click, = 1|is_wow, = 1), which means that the two
behaviors are almost independent. Thus, we choose to learn
independent models for predicting the two behaviors. In the
following, we will illustrate our model framework in detail.

4.2 The ProHENE Framework

In this subsection, we present our proposed model frame-
work ProHENE as illustrated in Figure 10. The core model
components and the basic idea are as follows: (1) For input
user features, we consider various user features such as
user demographics (gender and age) and pre-trained user
embeddings, and try to model feature interactions as the
analysis in Section 3.1. (2) We then learn user embeddings
by propagating initial features in a trainable modulated
spectral domain, by which the learned user embeddings can
capture useful information in ego networks and filter out
those noises, which is motivated by the analysis in Section
3.3. (3) Next we further feed the learned intermediate repre-
sentations to a hierarchical graph representation model. This
model can learn subgraph embeddings by clustering nodes
iteratively (here subgraphs can be considered to correspond
to connected components analyzed in Sec. 3.3). (4) Besides,
we try to model the interactions between users’ features
and friends’ features with a new attention model as the
analysis in Section 3.2. The proposed ProHENE framework
consists of five steps: Preprocessing ego networks, Input
layer, Feature smoothing layer, Hierarchical graph represen-
tation learning and Output layer.

Preprocessing Ego Networks. As the T-ego network can
be very large in such a dense social network, especially
for users with large degrees, we adopt a sampling strategy
to sample a subset of users from one’s ego-network. In
this work, we use Breadth-First Search (BFS) to generate
fixed-size ego network for each user/interaction due to its
effectiveness and efficiency. In detail, we first add the ego
user and active friends into the ego network in order. The
added order of active friends is determined by their active
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Fig. 10. Model Framework: (a) A sketch map of the processed ego network; (b) The input layer, in which each user’s pretrained embedding is
concatenated with handcrafted features and her influence feature which indicates her active status and whether she is the ego user; (c) The
feature smoothing layer, in which the each user’s concatenated input features are filtered by a band-pass filter in the spectral domain; (d) Each ego
network’s features are passed into a hierarchical graph representation learning model; (e) The output layer.

TABLE 6
List of input features of ProHENE. (*x) indicates the dimension of the
feature. OL: opinion leader. SH: structural hole.

Type Description Feature Definition
Gender (*1) 0: unknown, 1: male, 2: female
Demographics Age (*1) Age number
Region (*10) Encoding via region partition
. OL (*1) PageRank score
Social Roles SH (*1) Cut point or not
Ego (*1) Ego user or not
Context Action (*1) wow or not
Embedding Pre-train ProNE embedding
Cross Feature 2nd feature EM w.r.t. various features

(wow) timestamp. Then, the friends of users in the current
ego networks are added by performing BFS iteratively.
Note that Qiu et al. [31] use Random Walk with Restart
(RWR) [14] to generate the sampled ego networks. However,
information diffusion in WeChat is very localized (users can
only see articles their friends wowed); thus, BFS is more
suitable than RWR in this case. Finally, we perform BFS
in users’ 2-ego networks (7 2). We set the number of
nodes in each sampled ego network as m. The adjacency
matrix of the generated ego network for each instance is
denoted as A, q,;5) (here an instance refers to an interaction
between user u and article d before timestamp ¢s). We omit
the subscripts (u, d, ts) in the following description if there
is no ambiguity.

Input Layer. We consider various types of input features for
each user, as listed in Table 6. First, the input layer covers
customized user features, such as demographic and social
role features. Second, we also consider two-dimensional
contextual features for each user to indicate the active
status and positions in the ego network, in which one is
whether the user wowed the corresponding article, and
the other is whether the user is the ego user [31]. Third,
we further consider pre-trained user embeddings. Although
we study user behavior prediction in the ego network, it
would be beneficial to capture user structure information
in the global social network. Thus, we first pre-train user
embeddings in the large-scale friendship network. Many
network representation learning methods [29], [37], [48]
have been proposed to learn node representations in a

graph. We adopt ProNE [48] to pre-train user embeddings in
the large-scale friendship network due to its high efficiency
and effectiveness, which could take a relatively short time
to generate node embeddings of billion-scale graphs and
is effective by capturing global information by propagating
embeddings in the spectrally modulated domain.

The above mentioned features can be regarded as first-
order user features. Motivated by the analysis in Subsection
3.1, the cross-attribute factor might also take effect. Thus,
we adopt factorization machine technique to model fea-
ture interactions. We generate second-order features by first
mapping different features into the same space, and then
calculate the second-order feature interactions as follows:

1 X . r .

X = QW) =3 W) @)
where () is i*" user feature, W; is the feature projection
matrix of feature (") and F is the number of different fea-
tures. Here the cross terms indicate the interactions between
different features. Finally, we concatenate all the first-order
features {z(9 17| and the second-order feature X" to form
the input feature X.

Feature Smoothing Layer. Pre-trained user embeddings
only capture the global network structure. Users residing
in different ego networks may play different roles. Thus,
they should have different representations in different ego
networks. We propose a feature smoothing method via
graph filters, which can fine-tune user embeddings X via
cleaned ego network structures. The output of this step is
X' by propagating X in the modulated spectral domain of
ego networks.

In graph theory, the random walk normalized graph
Laplacian is defined as £ = I,;, — D14, where A is the ad-
jacency matrix of the ego network, m is the size of each ego
network, I, is the identity matrix, and D = > j A;j. The
normalized Laplacian can be decomposed as £ = UAU T,
where A = diag[A1, A2, ...Am]. In spectral graph theory,
small (large) eigenvalues in graph Laplacian control the
network’s global clustering (local smoothing) effect, which
motivates us to capture useful information of ego network
in the spectral domain. Global clustering (local smoothing)
effect means how well a graph can be partitioned into a
small (large) number of clusters so that nodes in different
clusters are less connected while nodes in the same clusters
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are densely connected. The smaller the jth eigenvalue ) is,
the better partition effect it would achieve for dividing to
j clusters [48]. Thus we employ a graph filter g to adjust
eigenvalues of the Laplacian.

L = Udiag([g(\1), g(A2), .. gA))U T ®)

where £ is the modulated Laplacian and g is the spectral
modulator. We propagate the initial node embeddings in
the spectral domain via modulated Laplacian as follows.

X =D A, - L)X (4)

where X0 is the user embedding matrix after modulated in
the spectral domain. Here I,,, — L is the spectral modulator
of the normalized adjacency matrix D=1 A. In this paper, we
adopt the graph filter as follows:

g()\) = e_%[(k_u)2_1]9 (5)

where g can be considered as an adjustable band-pass filter
kernel (see Figure 10) with p € [0, 2]. It passes or enlarges
eigenvalues within a certain range and filters out the other
values, thus reducing the noise or redundant information.

To avoid explicit eigendecomposition and Fourier trans-
form, we use the same trick in [48] to approximate g with
Chebyshev expansion and Bessel function [1]. In our model,
we set 1 as a trainable parameter. Thus it can be adaptively
learned for different datasets.

Hierarchical Graph Representation Learning. As we ana-
lyze above, the ego user’s activity is strongly correlated to
the number of connected components of her ego-network
formed by active friends (neighbors). Our idea here is to
design a hierarchical representation learning to encode the
substructures of ego networks. Substructures, such as con-
nected components, can be regarded as high-level structural
patterns, which motivates us to cluster similar nodes iter-
atively to encode these substructures. The goal of this step
is to generate high-level ego network representation Z'* at
iteration k. We employ graph neural networks (GNN) [27],
[36], [46] as basic modules to learn graph representation.

In detail, we first generate node embeddings of the
entire ego networks via a GNN [18], [42] module. The input
user embeddings are from the learned user embeddings via
graph filters described above.

le = C;I\H\To,embecl(AlO 5 Xlo) (6)

where Z'* is the hidden node embedding of layer I;, Alo
is the adjacency matrix of ego networks, and X' is the
input node features. In order to generate coarsened graphs
to represent graph substructures, following DIFFPOOL [46],
we learn an assignment matrix B r+1 yia another GNN,

B+t = softmax(GNN, poot (A, X)) (7)

where Blr+1 € R™EXMk41(my 1 < my, mo = m) and bé’;“
represents the probability of assigning node i to j'th clusters
in (k 4 1)’th assignment layer .

With assignment matrix B'*, ego-network can be trans-
formed to a smaller graph iteratively, in which each node
represents a “cluster”.

Xlk _ BlkTZlk € Rkahk (8)

Alk — BlkTAlk_lBlk c R™* XM (9)

where X'* is the cluster embeddings, and A'* is the
coarsened adjacency matrix which denotes the connectivity
strength between pairwise clusters.

Based on the coarsened graph, the coarse-level of node
embeddings can be generated by

Z'+1 = GNN embed (A", X1*) (10)
We generate different levels of (sub)graph embeddings
by pooling operations on node embedding matrices, and
then concatenate them to form the final representations of
ego networks,
L
zgraph _ || O'(Zlk)
k=1
We set o in Eq. 11 as a dimension-wise max-pooling
operation or sum-pooling to transform node embedding
matrix to graph embedding.

Basic GNN modules. As for GNN modules in Eq. 6, Eq. 7
and Eq. 11, we argue that GAT [42] is suitable since it can
learn the attention weights of neighboring nodes with their
node features. GAT learns the attention weight between
node i and node j as follows:

)

WAA exp(act(ag Wpz; + aj Wpz;))
Y D teN; exp(act(ag Wya; + ag Wyty))
where N is the neighbors of node 4, x; is the hidden em-
bedding of node 7, W), is the feature projection matrix, agr
and aqs are attention parameter, and act is the LeakyReLU
activation function. As shown in Eq. 12, GAT uses additive
attention (AA).

However, the attention mechanism used in GAT doesn’t
consider feature interactions between neighboring nodes.
Thus, we employ a simple modification over Eq. 12:

(12)

alPA = eXp(act((a;pri + bsre) - (a;thxj + bast)))
4 Yien, explact((ag Wpzi + bac) - (ag Wyt + bast)))

(13)

where by, and bgs are bias terms. We term this attention
as Dot attention (DA). As shown in Eq. 13, the cross terms
could model feature interactions of neighboring nodes. We
denote our model using GAT modules as ProHENEA and
the model using dot attention as ProHENEp,.

Output Layer. Finally, we let the ego network embedding
Z8Ph pass into fully connected layers to generate the pre-
diction scores, which is used to compare it with the ground-
truth wow /click labels. We use the cross-entropy loss as
our objective function. The prediction function at the output
layer and the loss function are described in Eq. 14 and Eq. 15,
respectively, where fcprq reprensents the fully-connected
layers, y;,.q denotes the action probability of instance i and
i is the ground-truth of instance i.

Ypred = fcpred(Zgraph) (14)

N

L=-— Z(y’b X log(y;red) + (1 - yZ) X (1 - log(yéred))) (15)
i=1
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4.3 Discussion

When users’ click and wow behaviors are concerned, it is
natural to take into account the article content. If we further
consider articles, the problem is highly related to social
recommendation. However, the main focus of this article is
user behavior prediction based on user demographics, user
relationships and ego network property, which is related to
the problem of social influence locality, so we exclude article
information to make the problem clear.

5 EXPERIMENTS

We present the effectiveness of our model on users” wow
and click behavior prediction of WeChat Top Stories, and
also a publicly available Weibo dataset. The codes and used
data in the experiments are publicly available.?

5.1 Experiment Setup

Datasets. We mainly evaluate our model on the collected
WeChat Top Stories dataset. To further verify the general-
ization ability of our method, we also choose a publicly
available Weibo dataset for evaluation.

For WeChat Top Stories dataset, we collect data from
Oct. 1 to Dec. 31, 2019 to evaluate our proposed method.
To effectively model the influence of users’ friend circles
on users’ online behaviors, we only consider interactions
with at least five friends having wowed the articles. After
filtering out data, we select all positive instances, in which
there are 3,163,171 wow instances, 2,181,279 click instances,
which result in 5,121,571 positive instances in total. We
further sample a subset of negative instances randomly
to keep the ratio between positive and negative instances
relatively balanced. We take data from Oct. 1 to Nov. 30
for training, Dec. 1 to Dec. 19 for validation and Dec. 20 to
Dec. 31 for testing, which results in 5,058,036 training in-
stances, 1,061,840 validation instances, and 876,664 testing
instances. We keep the ratio between positive and negative
instances as about 1.5 : 1 and 1 : 1 for wow and click
datasets respectively.

Another dataset is Weibo dataset®. Weibo* is the most
popular microblogging in China. The original dataset con-
sists of the direct user following networks and tweet logs
in 2012. The goal is to predict users’ retweet behavior based
on their local neighbors. We follow the same setup as [31].
Finally, we obtain 779,164 data instances, in which 50% are
used for training, 25% for validation and 25% for testing.

Comparison Methods. We compare our proposed model
with the following methods.

« Random. We generate like/click probability uniformly in
the range [0, 1) for prediction.

« Logistic Regression (LR). We use logistic regression (LR)
to train a classification model. We define three categories
of features: (1) ego users’ features, including user gender,
age, region, social roles (whether one is an opinion leader,
a structural hole) (2) ego network features, including the

2. https:/ /github.com/zfjsail / wechat-wow-analysis
3. http:/ /aminer.org/Influencelocality
4. https:/ /weibo.com

number of active friends, the number of connected com-
ponents (#CC) and the local clustering coefficient of the
ego graph formed by active friends; (3) relation features
of ego users and friends: average and sum of the common
friends’ ratio between ego user and each active friend.

e Random Forest (RF) [22]. We use Random Forest to train
a classification model due to its effectiveness in selecting
relevant features and instances. The used features are the
same as Logistic Regression.

e xDeepFM [21]. xDeepFM is a framework based on Fac-
torization Machine (FM), taking users’ features as input.
It learns high-order feature interaction with FM modules
and also has DNN modules to model feature interactions
implicitly. The input features are the same as LR and RF.

e Deeplnf [31]. DeepInf is a framework to learn users’
latent representation for predicting social influence. It
takes users’ ego networks as input and uses the graph
neural network to learn user representation. Here we
adopt GAT to learn user embedding due to its superiority
for influence prediction in the paper [31].

e Wang et al. [43]. This method models the topological in-
fluence structure based on Weisfeiler-Lehman (WL) algo-
rithm and learns the influence dynamics for the ego user
by leveraging GAT, too. The different parts of features are
concatenated to make predictions.

¢ SAGPool [19]. SAGPool is a graph pooling method that
uses self-attention to distinguish between nodes that
should be dropped and the nodes that should be retained.
The predictions are made on the smaller graphs.

o ASAP [32]. ASAP utilizes a novel self-attention network
to cluster similar nodes together in a graph. Then, the
most important clusters are selected and included in
the pooled graph. After each pooling step, the graph is
summarized using a readout function.

« StructPool [47]. StructPool is also a hierarchical graph
pooling method, which formulates the cluster assignment
problem as a structured prediction problem. It employs
conditional random fields to capture the relationships
among assignments of different nodes.

o ProHENE. Our model takes users’ ego network, and
user features as input. A delicate graph filter is used to
transform user features in the modulated spectral domain
of ego networks. Then we learn hierarchical structure em-
beddings of ego networks to predict ego users” behavior
in an end-to-end fashion. We use ProHENEjA to denote
using additive attention in the basic GNN modules, and
use ProHENEp,4 to denote using dot attention in the basic
GNN modules.

Parameter Settings. For WeChat dataset, we set the maxi-
mum number of users/nodes in the sampled ego network
as 32. For the pre-trained user embeddings, We generate
64-dim embeddings using ProNE [48]. In the user feature
smoothing method via graph filter, we choose the param-
eters in the graph filter as follows: p = 0.4, § = 7. For
hierarchical graph representation learning, the number of
graph coarsening steps is set as 2. In GAT encoders of
hierarchical graph representation learning, we set the head
number as 8 and hidden vector dimension for each head
as 16. When training, the learning rate is 0.01 for wow
prediction and 0.1 for click prediction. The L2 regularization
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TABLE 7
Results of User Behavior Prediction.

| WeChat Wow | WeChat Click | Weibo
Method | Prec  Rec F1 AUC | Prec  Rec F1 AUC | Prec  Rec F1 AUC
Random 4784 50.06 48.92 50.05 | 28.64 50.13 36.45 50.02 | 25.12 50.48 3355 50.15
LR 68.08 70.08 69.06 76.73 | 41.71 67.01 51.41 70.07 | 4297 7137 53.64 76.38
RF [22] 69.20 65.17 6712 76.69 | 39.52 7469 51.69 70.12 | 40.03 73.66 51.87 75.14
xDeepFM [21] 66.23 8096 7285 7825 | 4088 75.09 5294 71.61 | 30.20 7390 4288 64.38
Deeplnf [31] 70.28 8146 75.46 83.06 | 43.88 76.03 55.65 7450 | 48.09 71.67 5756 81.46
Wang et al. [43] 69.76 79.40 7427 8191 | 4191 75.07 5379 7231 | 4558 74.63 56.59 80.26
SAGPool [19] 81.74 7543 7846 86.18 | 4658 79.19 58.66 77.37 | 43.79 7381 5497 78.89
ASAP [32] 71.13 79.81 7522 8328 | 4492 7657 56.62 7548 | 46,55 70.64 56.12 79.87
StructPool [47] 6756 7921 7292 7946 | 4020 7855 53.19 7154 | 3047 7287 4298 61.83
ProHENEpA 8495 7681 80.67 87.64 | 46.63 82.01 59.46 78.05 | 50.09 72.87 59.37 83.08
ProHENEpa 85.46 7630 80.62 87.69 | 46.45 82.81 59.52 78.27 | 48.70 74.88 59.01 82.76
w/o pre-train 7496 7842 76.65 8491 | 45.68 75.77 57.00 76.09 | 4733 7415 57.78 81.51
w/o node feature | 85.01 75.69 80.08 87.10 | 45.64 8226 5871 77.64 | 4634 7446 57.13 81.10
w/o 2nd feature | 86.40 76.16 80.16 8750 | 46.66 81.66 59.39 78.16 | 46.12 75.02 57.12 81.03
w/o smoothing 7923 7757 7839 86.04 | 46.26 78.38 58.18 76.89 | 4895 7220 5835 82.13

weight is 0.0005. Adagrad [8] is chosen as the optimizer. As
for Weibo dataset, there are several differences as follows.
Following [31], we adopt random walk with restart (RWR)
to generate the sampled ego networks. The number of graph
coarsening step is 1 and the learning rate is 0.05.

5.2 Overall Results

Table 7 summarizes the results of user behavior predic-
tion. The comparison methods can be roughly divided into
several categories: (1) traditional classifiers: LR and RF, (2)
deep learning method by modeling feature interactions:
xDeepFM, (3) the state-of-the-art user behavior prediction
methods based on ego networks: DeepInf and Wang et al.
and (4) hierarchical graph representation learning methods:
SAGPool, ASAP and StructPool. (3) and (4) are both GNN-
based methods. Generally, we observe that our model Pro-
HENE consistently outperforms baseline methods.

For traditional classifiers, it can not achieve better predic-
tion performance than other methods, although it leverages
hand-craft user features, user relation features and network
features. xDeepFM, a factorization-machine based neural
network model, achieves better performance than LR and
RF on WeChat dataset, which might imply that the correla-
tion between user features is an inherent factor that impacts
users’ wow and click behaviors, such as the correlation
between users’ gender and age.

DeepInf and Wang et al. could both achieve good pre-
diction performance on three datasets. It demonstrates that
modeling pairwise user influence via graph attention is
effective. However, the prediction performance of Wang
et. al is inferior than DeeplInf, which might indicate that
sometimes local topological features could result in negative
impact on user behavior prediction.

For hierarchical graph representation learning methods,
SAGPool outperforms most of baselines, though still weak
than ProHENE. It indicates that dropping nodes via self-
attention on graphs is another effective solution to graph
coarsening. Besides, ASAP performs better than SAGPool
on Weibo dataset, which might imply that Weibo and

WeChat datasets have different characteristics for user be-
havior modeling. As for StructPool, we infer that modeling
cluster assignment as a structured prediction problem via
conditional random fields is ineffective for our problem due
to its inferior performance.

For our proposed model, its superiority could mainly
attribute to hierarchical structure embedding of ego net-
works and the feature smoothing effect. Moreover, com-
pared with baselines using various hand-crafted features,
our method only uses user features as input. Thus, our
method can model user relations and ego network struc-
ture better than hand-crafted features. Furthermore, we
observe that ProHENEp, achieves similar performance
as ProHENEss and ProHENEp, sometimes outperforms
ProHENEA, slightly. Here we argue that AUC is more
important than F1 metric, since F1 depends on a good
threshold for classification. Thus, modeling feature interac-
tions between neighboring nodes takes effect at times.

In addtion, for WeChat Top Stories dataset, we find
that the performance differences between different methods
for click prediction are smaller than those of wow pre-
diction. Another observation is that, in general, the click
prediction performance is much lower than wow prediction
performance. This phenomenon is probably because users’
click (or reading) behavior is more correlated to the articles
themselves, while their wow behavior is more relevant to
the social influence around them.

5.3 Ablation Study.

We study the effects of different model components for user
behavior prediction.

e w/0 pre-train: Remove the pre-trained ProNE user em-
bedding in the input features. Note that the second-order
features also lack this part.

« w/o node feature: Remove the demographic and social
social role features in the input features. Note that the
second-order features also lack this part.

o w/0 2nd feature: Remove the second-order feature inter-
actions of different user features in the input features.
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Fig. 11. Wow and click performance (AUC) on test dataset w.r.t. the number of pooling layers in hierarchical graph representation learning
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Fig. 12. Prediction performance (AUC and F1) on test dataset w.r.t. 8 in the graph filter of the feature smoothing step.

» w/o smoothing: Remove the feature smoothing step via
the graph filter.

In Table 7, the bottom part summarizes the results of
the ablation study. We observe that all studied compo-
nents contribute to the effectiveness of our model to some
degree. Among all the components, removing pre-trained
embeddings and removing feature smoothing step cause
larger performance drops compared to other components on
WeChat dataset. In contrast, adding second-order features
contributes a little to predict user behavior in WeChat Top
Stories, but contributes more on Weibo dataset. Meanwhile,
our model can perform well, even without input hand-
crafted user features.

5.4 Parameter Analysis.

The Number of Coarsening Steps in Hierarchical Graph
Representation Learning. In hierarchical graph representa-
tion step, each coarsening step transforms the ego network
to smaller graphs iteratively by clustering similar “nodes”
together. We study whether the number of coarsening steps
influences the prediction performance. Figure 11 shows
the prediction performance w.r.t. the number of coarsening
steps. In the experiment, we set in each iteration, the number
of “nodes” becomes half of that of the last iteration. We can
see that hierarchical graph representation clearly better than
“flat” representation (0 pooling layer) on WeChat Wow and
Weibo dataset. The prediction performance changes little in
terms of the number of coarsening steps for click behavior
prediction. When there are 2 coarsening steps, test AUC
and F1 for click prediction is highest. 1 pooling layer is the
best for Weibo dataset and WeChat wow. Perhaps although
we set the coarsening ratio as 50%, GNN can automatically
learn the node proximity and the appropriate number of
meaningful clusters [46].

(a) Positive wow sample (b) Negative wow sample

Fig. 13. Visualization of cluster assignment of hierarchical graph rep-
resentation learning for wow behavior prediction. (a) Positive sample:
the ego user wowed the article. (b) Negative sample: the ego user
didn’t wow the article. Here different colors represent different cluster
assignments. The largest node in each ego network is the ego user.
Nodes with “*” inside mean that these users “wowed” the article.

Parameters in the graph filter. We analyze how the param-
eters 6 in the graph filter g(\) = e~ 2[(A="~110 can affect
the prediction performance. Here p is trainable and we set
its initial value as 0.4. Figure 12 shows the performance
variations (AUC and F1) w.r.t. § on test data. Parameter 6
in g affects the peak value of modulated eigenvalue . We
observe that when 0 = 7 or § = 9, AUC is the higher for
wow and click prediction than other tested configurations.
However, for weibo dataset, when 6 varies from 1 to 9, test
performance increases first then decreases.

5.5 Visualization of Hierarchical Graph Representation
Learning

We visualize the hierarchical graph representation learning
process to understand how it assigns nodes into different
clusters and performs predictions. Figure 13(a) and 13(b)
show two case studies for wow prediction, where Figure
13(a) is a positive wow instance and Figure 13(b) is a
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negative wow instance. The two subfigures both visualize
the first coarsening step. We can observe that, although the
coarsening ratio is set as 50%, which means the nodes in
one ego network can be assigned to at most 16 clusters, the
two examples both assign nodes into only three clusters. It
shows that the learning algorithm can automatically learn
the appropriate number of clusters. Moreover, for wow
positive instance in Figure 13(a), all active friends (who
wowed the article) are assigned to blue clusters, which
may correspond to the conformity phenomenon. As for the
negative wow instance in Figure 13(b), the active friends are
assigned to different clusters (nodes with different colors
all have nodes with “*” within). The inactivity of the ego
user perhaps can be explained by the negative correlation
between ego users’ wow probability and structural diversity
(referring to Sec. 3.3).

6 RELATED WORK

6.1 Social Influence Analysis

Social influence has been studied and modeled widely from
different viewpoints. At the macro level, the problem of
influence maximization in social networks has been studied
in [6], [17]. Xin et al. [35] study the indirect influence on
Twitter. Micro influence like pairwise influence has been
studied in [12], [34], [49]. Liu et al. [24] study the micro
mechanism of influence diffusion in heterogeneous social
networks and propose a probabilistic generative model.
Tang et al. [38] propose Topical Affinity Propagation (TAP)
to model influence on different topics. More recently, deep
learning models have been proposed to model social influ-
ence. Qiu et al. [31] use Graph Attention Networks (GAT)
to model social influence locality. Feng et al. [10] propose
a skip-gram architecture to learn user embeddings which
reflect social influence. In this work, we first analyze social
influence on micro-level (e.g. pairwise influence) and local
network structure, based on which we propose an effective
method to model social influence.

6.2 User Feedbacks in Recommender Systems

Generally, user feedbacks in recommender system fall into
two categories: explicit feedback and implicit feedback.
Implicit feedback includes click, mouse movement, etc.,
and explicit feedback includes retweet, ratings and so on.
Jawaheer et al. [16] propose a classification framework for
explicit and implicit feedback based on several properties,
including Cognitive Effort, User Model, Scale of Measure-
ment, and Domain Relevance. They also compare different
user feedbacks in detail on an online music recommendation
service [15]. Many recommender systems try to combine dif-
ferent user feedbacks to improve recommendation perfor-
mance. Liu et al. [25] unify explicit and implicit feedback in
a matrix-factorization framework. However, Tang et al. [39]
find that it is better to train different models separately for
each feedback data and then combine them. In this work, we
analyze both wow and click user feedbacks and discover
some interesting differences between them. Then we train
separate models for each feedback data.

6.3 Network Representation Learning

Recently, network representation learning at the node level
and graph level has become a research hotspot. Gener-
ally, node-level representation learning approaches can be
broadly categorized as (1) factorization-based approaches
such as GraRep [4], NetMF [30], (2) shallow embedding
approaches such as DeepWalk [29], LINE [37], HARP [5],
and (3) neural network approaches [3], [20]. Recently, graph
convolutional network (GCN) [18] and its multiple variants,
such as GAT [42], GIN [44], have become the dominant ap-
proaches for network representation learning, thanks to the
use of graph convolution that effectively fuses graph topol-
ogy and node features. Furthermore, there are also some
works using graph convolution architectures for graph-
level representation learning, such as [19], [36], [46]. In
order to generate graph representations, most works employ
graph convolution encoders to generate node embeddings
first, and then use some pooling or READOUT functions,
such as hierarchical pooling [46] and sum operations [36].
Among hierarchical pooling methods, some [19], [32] use
self-attention to select important nodes in the graph or
cluster similar nodes together. Yuan et al. [47] regard node
clustering problem as structured prediction problem via
conditional random fields. In this work, based on users’
ego networks, we first learn user/node embeddings by
modulating the spectral domain of the ego networks. Then,
a hierarchical graph representation method is utilized to
generate graph-level embeddings. Our method is motivated
by and consistent with our statistical analysis.

7 CONCLUSION

In this work, we use the WeChat Top Stories data to un-
derstand user preferences and wow diffusion. Our study
reveals several interesting phenomena: 1) Males’ click prob-
ability is higher than females’, while females’” wow prob-
ability is higher than males’. 2) The active rate of young
generations (users of 20s) is the lowest. 3) Given the fixed
number of friends wowed an article, the larger #CC (the
number of connected components formed by active friends),
the lower the wow probability of ego users is, but the higher
the click probability is.

Based on the important discoveries, we also develop a
unified model ProHENE to predict users” online behaviors.
We evaluate it on the real sizable social network, and results
show that the proposed model can achieve significantly
better performance over several state-of-the-arts.
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