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Abstract

Learning disentangled representations for user intentions from multi-feedback (i.e.,
positive and negative feedback) can enhance the accuracy and explainability of
recommendation algorithms. However, learning such disentangled representations
from multi-feedback data is challenging because i) multi-feedback is complex:
there exist complex relations among different types of feedback (e.g., click, unclick,
and dislike, etc) as well as various user intentions, and ii) multi-feedback is noisy:
there exists noisy (useless) information both in features and labels, which may
deteriorate the recommendation performance. Existing disentangled recommenda-
tion works only focus on positive feedback, failing to handle the complex relations
and noise hidden in multi-feedback data. To solve this problem, in this work we
propose a Curriculum Disentangled Recommendation (CDR) model that is capa-
ble of efficiently learning disentangled representations from complex and noisy
multi-feedback for better recommendation. Concretely, we design a co-filtering
dynamic routing mechanism which simultaneously captures the complex relations
among different behavioral feedback and user intentions as well as denoise the
representations in the feature level. We then present an adjustable self-evaluating
curriculum that is able to evaluate sample difficulties for better model training
and conduct denoising in the label level via disregarding useless information. Our
extensive experiments on several real-world datasets demonstrate that the proposed
CDR model can significantly outperform several state-of-the-art methods in terms
of recommendation accuracy3.

1 Introduction

Recommenders aim to capture the user’s preferences from different aspects of information for more
accurate prediction[1–4] . Learning disentangled representations that can uncover and disentangle
the latent explanatory factors hidden in user behavioral data has recently been shown as an effective
way to discover users’ intentions, improving both recommendation accuracy and explainability [5–9].
Multi-feedback, normally including the positive feedback (e.g., click) and negative feedback (unclick
and dislike, etc.), is of great significance to depict the user’s unbiased and various intentions [10].
Learning disentangled representation from multi-feedback is able to capture various user intentions
more accurately, leading to improvement of accuracy and explainability in recommendation.

However, learning such disentangled representation from multi-feedback that can best serve recom-
mendation is quite challenging due to two reasons. i) Multi-feedback is complex: different types of
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feedback in multi-feedback data have complex relations with each other, and the relations between
multi-feedback and various user intentions are also complicated. For instance, a user may unclick
an item because of disinclination, getting tired of seeing the same type of item previously clicked
too many times, as well as lacking enough time to view the item in detail. ii) Multi-feedback is
noisy: the large amount of feedback such as unclick brings a lot of noisy information (useless for
recommendation) that may severely deteriorate the recommendation accuracy. For example, a user
may unclick an item because he truly dislikes this item or he has interests in the item but is interrupted
by others before making the click decision. As such, completely incorporating the unclick feedback as
historical features to extract user intention representations may run the risk of bringing feature-level
noise, while directly regarding the unclick behavior as negative samples to train the model will
probably introduce label-level noise. Existing works on disentangled representation learning merely
rely on the positive user feedback to extract the user intentions, failing to handle the complex relations
and noisy (useless) information hidden in multi-feedback data.

To tackle these challenges, we propose a Curriculum Disentangled Recommendation (CDR) model
that is able to accurately discover various user intentions from different kinds of user feedback. The
CDR model consists of two core components, i.e., the co-filtering dynamic routing mechanism and
the adjustable self-evaluating curriculum strategy, which together learn disentangled representations
as well as captures the complex relational dependencies and filters out noise from multi-feedback to
achieve more accurate recommendation. More concretely, the proposed routing mechanism utilizes
the dependencies among different feedback to accurately discover the user preferences, followed by
the intention aggregation which further helps to learn disentangled representations for users. Our
adjustable self-evaluating curriculum then guides the model towards better optima by reweighing
samples according to the self-evaluated difficulty. The proposed curriculum can further enhance the
model performance by making the model learn from multi-feedback data of different difficulties at
different learning paces, thus preventing the model from overfitting the data with improper labels.
We conduct extensive experiments on several real-world datasets to demonstrate that our proposed
CDR model can significantly beat baseline methods in terms of recommendation accuracy.

To summarize, our contributions are listed as follows. (1) We propose a Curriculum Disentangled
Recommendation (CDR) model to learn disentangled representations for recommendation from
multi-feedback with complex relations and noisy information. (2) We propose a co-filtering dynamic
routing mechanism to simultaneously capture complex relations among different sorts of feedback and
various user intentions as well as filtering out feature-level noise in multi-feedback. (3) We propose
an adjustable self-evaluating curriculum to guide the model towards better optima by alleviating the
impact of label-level noise in a more controllable and convenient way.

2 Related Work

Recommendation Based on Multi-Feedback Apart from positive feedback, negative feedback data
are also essential for capturing user preference [11]. Early efforts [12–14] regard all unclick data
equally as negative feedback and decrease the confidence compared to click data. Later works utilize
additional information [15–18] or reinforcement learning [19–21] to distinguish real negative signals
from all the unclick data. A recent method [22] also recognizes negative feedback from the clicked
news by reading dwell time. However, all these methods merely select better negative training samples
and ignore multi-feedback as features to learn user interests. DFN [10] simultaneously incorporate
click, unclick, and dislike feedback simply by rough attention mechanism and concatenation, which
is insufficient to capture the user’s comprehensive and accurate interests.

Disentangled Representation Learning Disentangled representation learning aims to learn various
hidden explanatory factors behind observable data in different parts of the learned vector presenta-
tion [23]. Many variants of variational auto-encoder (VAE) [24] have been studied to improve the
disentanglement of the learned representation [25–27] by adding regularization terms to decrease
the mutual information between different parts of the learned vector. Disentangled representation
learning has also found its application in recommendation [5–8, 28, 29] by learning disentangled
user preference from user positive feedback to improve both the performance and interpretability.
Different from these works, our work focuses on learning more comprehensive disentangled interests
with multi-feedback.
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Curriculum Learning Curriculum learning [30, 31] aims to design a dynamic sample reweighting
strategy throughout the training process to improve performance and training efficiency. Traditional
methods mostly follow an easy-to-hard paradigm, i.e., assigning higher weights to easier samples
in earlier training, where the “easiness” measurement can be both domain-knowledge-based [32–
34] and loss-based [35, 36]. These methods can only be effective for specific tasks, and “easy-
to-hard” is sometimes sub-optimal compared with “harder first” [37]. Recent works propose to
automatically learn a curriculum by reinforcement learning [38–40], meta-learning [41], etc. However,
the optimization process of these curricula is time- or resource-consuming, which is too costly for
abundant recommendation data. Our method provides an efficient and also flexible curriculum that is
beyond the easy-to-hard limit and more adjustable and interpretable than automatic methods.

3 Method

In this section, we introduce the proposed Curriculum Disentangled Recommendation (CDR) model
(Figure 1) to mine comprehensive and accurate user intentions from users’ noisy multi-feedback.

3.1 Notations and Problem Formulation

Notations We denote φ(a,b) as the inner product of two vectors LayerNorm(a) and
LayerNorm(b), where LayerNorm refers to Layer Normalization operation and φ(a,b) measures
the similarity between vector a and b. sim(keyi,query) is the normalized similarity between query
and keyi on set Q that is composed of all the keys: sim(keyi,query) =

exp(φ(keyi,query))∑
i′∈Q exp(φ(keyi′ ,query)) .

Multi-feedback based prediction The vth user’s historical behavior contains his or her clicked
item sequence c(v) = [c

(v)
1 , c

(v)
2 , · · · , c(v)m ], unclicked (i.e., presented but not clicked) item sequence

u(v) = [u
(v)
1 , u

(v)
2 , · · · , u(v)n ], and disliked (i.e., press to the dislike button or low rated) item se-

quence d(v) = [d
(v)
1 , d

(v)
2 , · · · , d(v)l ], where each term in these sequences represents an item that the

v(th) user interacted with. Our goal is to learn users’ disentangled intentions and then accurately
predict svt, i.e., the vth user’s preference towards the candidate item t(v). Besides, we utilize the
profile (e.g., age and gender) of the vth user to aid the learning and prediction process.

3.2 Co-filtering Dynamic Routing

The routing mechanism takes as input user profile, candidate item feature, and user multi-feedback
history, and makes the final prediction by the following three steps. It first utilizes the relations
behind different kinds of feedback to discover where the user’s true interests locate. Then, the model
aggregates the user’s disentangled intentions from the useful behavior. Finally, it predicts the user’s
preference towards the candidate item based on the learned intentions.

3.2.1 Interests Mining

The user’s interests could be reflected by his or her various kinds of feedback. Ignoring any kind
of feedback may lead to incomplete or inaccurate preference modeling. However, the noise hidden
behind these data makes it infeasible to directly use multi-feedback to learn the user’s interests. Thus,
how to make use of the relations of different kinds of feedback to discover where the user’s true
interests locate is the key in this step.

First, we project each item in c(v), d(v), and u(v) into the embedding space by concatenating its ID and
category embedding. Thus, we obtain the clicked embedding sequence h(v)

c = [h(v)
c1 ,h

(v)
c2 , · · · ,h

(v)
cm],

unclicked embedding sequence h(v)
u = [h(v)

u1 ,h
(v)
u2 , · · · ,h

(v)
un ], and disliked embedding sequence

h(v)
d = [h(v)

d1 ,h
(v)
d2 , · · · ,h

(v)
dl ]. We also project the information of the user profile into the embedding

space and obtain the user profile feature F(v) = {F(v)
1 ,F(v)

2 , · · · ,F(v)
g }, where g is the number of

user profiles. We then utilize the power of transformer encoder [42] to obtain better representation for
each item with fully interactions: [z(v)c1 , z(v)c2 , · · · , z(v)cm] = C-Encoder(h(v)

c ), [z(v)u1 , z(v)u2 , · · · , z(v)un ] =
U -Encoder(h(v)

u ), [z(v)d1 , z(v)d2 , · · · , z(v)dl ] = D-Encoder(h(v)
d ), where the z(v)ci , z

(v)
ui , z

(v)
di refer to d-

dimensional feature vectors containing the vth user’s interests.
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Figure 1: The framework of the proposed Curriculum Disentangled Recommendation (CDR) model

We then need deeper thinking towards the relations among multiple feedback to discover user’s true
interests. The first thing to consider is where the user’s interests will locate. We note that not only
the click behavior contains user interests, but the unclick sequence generated by the recommender
algorithms could also contain rich information about user interests. Therefore, utilizing both kinds
of feedback could help to learn comprehensive user interests. The second noteworthy thing is how
to discover the user’s true interests from the noisy data. To filter out the noise information in these
historical sequences, we need the disliked item sequences that could reflect the user’s strong negative
intentions and have high confidence. Thus, we average these strong negative features and regard it as
the negative intention of the vth user: n(v) = 1

l

∑l
i=1 z(v)di . This highly confident negative intention

could be used to filter the noise in both clicked and unclicked history items. We adopt the similarity
between each item and the negative intention to judge whether the item should contribute to the user
intentions. Based on the intuition that higher similarity to the negative intention should contribute
less to the user preference, the contribution of each item to the user intentions can be formulated as
follows:

n
′(v)
c = n(v) + bc1, z

′(v)
ci = z(v)ci + σ1(Wc1z(v)ci + bc2),

d
(v)
ci =

exp(−φ(z
′(v)
ci , n

′(v)
c ))∑m

j=1 exp(−φ(z
′(v)
cj , n

′(v)
c ))

,

n
′(v)
u = n(v) + bu1, z

′(v)
uj = z(v)uj + σ1(Wu1z(v)uj + bu2),

d
(v)
uj = σ(−φ(z

′(v)
uj , n

′(v)
u ) +MLP ([F(v); z(v)uj ])),

(1)

where σ1 is the ReLU activation function and σ is the Sigmoid activation function. d(v)ci and d(v)uj
represent the contribution of each clicked item and unclicked item to the user intention, respectively.
We obtain d(v)ci by calculating the similarity between each clicked item and the negative intention, and
we also introduce the parameters Wc1,bc1,bc2 to avoid some outliers that disobey our intuition. As
for the unclicked item sequence, there exists more noise. Thus, we utilize not only the information of
the user negative intention but also the user profile feature F(v) to measure the importance of each
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unclicked item. We first concatenate user profile features and the unclicked item feature together, and
then use a two-layer MLP to judge whether the unclicked item is important.

Besides the noise effect, we also take the time and candidate item factors into consideration. Intuitively,
more recently clicked items and items having a higher similarity to the candidate item will contribute
more to the user preference towards the candidate item. The formulation is as follows:

time(v)ci = z(v)ci + σ1(Wc2[z(v)ci ; pi] + bc3), time
′(v)
cm = z(v)cm + σ1(Wc3[z(v)cm; pm] + bc4),

cand(v)
ci = z(v)ci + σ1(Wc4z(v)ci + bc5), z

′(v)
ct = h(v)

t + bc6,

f
(v)
ci = sim(time(v)ci , time

′(v)
cm ) + sim(cand(v)

ci , z
′(v)
ct ),

cand(v)
uj = z(v)uj + σ1(Wu2z(v)uj + bu3), z

′(v)
ut = h(v)

t + bu4, f
(v)
uj = sim(cand(v)

uj , z
′(v)
ut ).

(2)

We consider the impact of both time and candidate factors for the clicked items. The candidate item
feature h(v)

t ∈ Rd and the most recently clicked item feature z(v)cm measures the importance of each
clicked item. pi is the position embedding of each item and encoded for more accurate time factor
consideration. However, for the unclick sequence, we only consider the candidate factor, because the
time of unclicking one item has low relations with the user’s current interests. f (v)ci and f (v)uj are the
importance of each clicked item and unclicked item, respectively.

3.2.2 Intention Aggregation

After considering how each kind of feedback will contribute to the user’s intentions, we then conduct
intention aggregation to obtain the vth user intentions under various latent categories. Assuming that
the intentions of all users can be decomposed to K latent categories and each latent category has its
prototype mk ∈ Rd, k = 1, 2, · · · ,K, we can predict the probability of each item belonging to the
kth latent category by their similarities:

c
(v)
ik = sim(mk, z

(v)
ci ), u

(v)
jk = sim(mk, z

(v)
uj ). (3)

We then use the highly confident negative intention to filter the click and unclick historical item
features by a residual structure. The kth intention of the vth user could be aggregated from all the
filtered clicked and unclicked item features, z1(v)ci and z1(v)

uj as Eq. (4). βk is the bias for the kth

latent category. λ < 1 is the prior confidence of the unclicked item. inten(v)
k is the vth user’s interest

under the kth latent category.

z1(v)
ci = z(v)ci +MLP ([z(v)ci ; n

′(v)
c ; z(v)ci − n

′(v)
c ; z(v)ci � n

′(v)
c ]),

z1(v)
uj = z(v)uj +MLP ([z(v)uj ; n

′(v)
c ; z(v)uj − n

′(v)
c ; z(v)uj � n

′(v)
c ]),

inten(v)
k =

m∑
i=1

d
(v)
ci · f

(v)
ci · c

(v)
ik (z1(v)

ci + βk) + λ

l∑
j=1

d
(v)
uj · f

(v)
uj · u

(v)
jk · (z1(v)

uj + βk).

(4)

3.2.3 Prediction

Based on the learned intentions, we can predict the user’s preference towards the candidate item by
calculating the inner product between the candidate item and user disentangled intentions. However,
there also exist some users who might have little historical behaviors. So we also manage to discover
the interests of the vth user from his or her profile feature and the candidate item feature, aiming to
capture some common patterns, e.g., females may show high interests in fashion articles. We collect
these information in Fall = [F(v)

1 , · · · ,F(v)
g ,h(v)

t1 , · · · ,h
(v)
tr ], where h(v)

tj ∈ R d
r is one field of the

candidate item embedding h(v)
t . Then the multi-head attention [42] is used to capture the interactions

of different fields of features:
[f1,f2, · · · ,fg+r] =MultiheadAttention(Fall). (5)

By simultaneously considering the user’s interests learned from the historical multi-feedback and
feature interaction, we can predict the user preference towards the candidate item svt as Eq. (6),
where the first term is the preference inferred from user feedback (<> is the inner product) and the
second term is from the feature interaction between the user profile and item features.

svt =

K∑
k=1

< inten(v)
k , h

(v)
t > +MLP ([f1;f2; · · · ;fg+r]). (6)
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Our loss function is designed as follows, composing of the widely adopted binary cross-entropy loss
and the regularization term for disentanglement aiming to minimize the similarities among different
intentions. yvt is the ground truth label, and DT is the training set.

L = − 1

|DT |
∑

(v,t)∈DT

yvt log σ(svt) + (1− yvt) log(1− σ(svt)) +
K∑
i=1

∑
j 6=i

φ(mi,mj) (7)

3.3 Adjustable Self-evaluating Curriculum towards A Better Self

All the aforementioned methods could help to capture the user’s comprehensive true interests from
the input features. However, the noise existing in the training labels will also mislead our model
to suboptimal parameters. To tackle the problem, we leverage the idea of curriculum learning to
denoise [31]. However, it is proved in [36] that different curriculum strategies (e.g., easy to hard,
hard example mining, etc.) can be effective for different dataset settings, and thus we need a flexible
curriculum design to adapt to complex recommendation scenarios.

To this end, we propose a novel adjustable self-evaluating curriculum for recommendation, which
algorithm is shown in Algorithm 1. Our goal is to obtain the optimal parameters θ for our recom-
mender F . When training on the batch B, we first calculate the prediction result σ(sj) for each
sample and the difference between the ground truth label yj and our prediction. Then, we obtain the
importance of each sample through a Gaussian distribution, where the sample with a closer difference
to a preset value thre will get higher importance. Here, the hyperparameter thre ∈ (0, 1) reflects
the sample difficulty we hope the model to focus on. Concretely, if thre approaches 1, the harder
samples will get higher weights. While if thre approaches 0, the model will lay more emphasis on
the easier samples. In our experiment, we can adjust the values for thre to set the curriculum of
different difficulty levels for our model to improve itself. Finally, we optimize the parameters by
the reweighted loss with an existing optimization method π. In the algorithm, µ controls the degree
of concentration of the model and τ is a time-weight-decay factor. As the training goes on, µ is
becoming smaller and smaller by timing τ , which makes the Gaussian distribution smoother and
smoother so that all the samples almost get equal weights for training in the end. This time-varying
process conforms to the human learning process: after we gradually improve ourselves by a scheduled
curriculum, we should review all the samples to further consolidate the knowledge in our mind. Since
in the early stage the model has already learned enough knowledge, it could be more robust and
less likely to be influenced by the noisy samples. By adjusting the values of τ , we can control the
curriculum learning speed, where a larger τ means a slower learning process.

Algorithm 1 Adjustable Self-evaluating Curriculum towards A Better Self
1: input: {(xvt, yvt)}(v,t)∈DT

, π(·), `(·, ·), τ < 1, counter, interval, thre, F
2: initialize: θ, µ
3: for B ⊂ DT do
4: for (xj , yj) ∈ B do
5: sj = F (xj), dj = abs(yj − σ(sj));
6: wj = exp(−µ× (dj − thre)2);
7: wj ← wj/

∑|B|
j=1(wj);

8: end for
9: θ ← θ − π(∇θ

∑|B|
j=1 wj`(sj , yj) +

∑K
i=1

∑
j 6=i φ(mi,mj));

10: counter ← counter + 1;
11: if counter%interval == 0 then
12: µ← µ× τ ;
13: end if
14: end for

Discussion. Our proposed curriculum elegantly converts the designing process of a curriculum
training strategy to a hyper-parameter search process on thre, µ and τ , which improves the flexibility,
controllability, and explainability of curriculum design, while goes beyond the conventional assump-
tion of “easy-to-hard” [30, 35, 32, 33]. Meanwhile, compared to automatic curricula [38, 40, 43, 39],
our method requires almost no extra time and memory overhead for learning and applying the
curriculum, which is efficient and conforms to the demand of recommendation scenarios.
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4 Experiments

4.1 Experimental Setup

Table 1: Dataset statistics

Amazon-Beauty Amazon-Sports MovieLens-1M WeChat5D
# of users 22,342 35,590 6,039 13,340
# of items 12,099 18,356 3,628 112,859
# of click 176,520 277,088 836,478 749,138

# of unclick 788,008 1,179,266 2,138,040 7,766,013
# of dislike 21,847 19,203 163,515 295,504

Datasets We conduct our experiments on four real-world datasets: WeChat5D, MovieLens-1M[44],
Amazon Sports[45] and Amazon Beauty[45]. The datasets statistics are shown in Table 1. WeChat5D
is a mobile article recommendation dataset of WeChat Top Stories and itself has different kinds of
user feedback. All data are preprocessed via data masking to protect user privacy. For the Amazon
and MovieLens dataset, we regard the ratings that are larger than 2 points as click feedback, while
the rest as the dislike feedback. Since these three datasets have no information about the items that
are recommended to the users but are unclicked, we simulate a simple recommendation environment.
For each piece of user like or dislike interaction, we generate four pieces of unclick interactions for
this user. They include three items that are sampled from the top popular items at that time and one
item randomly sampled from all the items. This simulates the simplest recommendation rule, i.e.,
recommendation based on item popularity. The randomly sampled item simulates the scenario that the
recommenders would always recommend something to explore the customer’s potential interests [46].
Note that all the user’s unclick interactions are not in the user clicked or disliked item sets. More
specifically, based on the two Amazon datasets and the MovieLens-1M dataset, for each piece of
user like or dislike interaction, we generate four pieces of unclick interactions for this user. They
include three items that are sampled from the top popular (top 3000 for Amazon datasets and top 1/2
for MovieLens-1M) items at that time and one item randomly sampled from all the items. The whole
dataset is chronologically divided to the train, valid, and test dataset by the ratio of 8:1:1. Note our
training and testing phase follow the sequential recommendation setting. For example, if one user’s his-
torical behavior is a sequence {1, 2, 3, · · · , 18, 19, 20}. Then, we will generate the validation and test
samples as follows: two validation samples {[1, 2, 3, 4, · · · , 16], [17]}, {[1, 2, 3, 4, · · · , 16, 17], [18]}
and two test samples {[1, 2, 3, 4, · · · , 16, 17, 18], [19]}, {[1, 2, 3, 4, · · · , 16, 17, 18, 19], [20]}, where
the first term in [ ] represents the historical information we use for prediction and the second term is
the next item for prediction. We always use all the user’s real historical behaviors as the sequential
input to the models to predict the next item the user will click.

Baselines We compare our approach with the state-of-the-art (SOTA) methods. DeepFM [47] and
AutoInt [48] are recommenders based on feature interaction. DIN [49], SASRec [50], DFN [10],
SDR [9] are methods based on the user’s sequential historical behavior. Specifically, DFN considers
different kinds of user feedback and concatenates these features together. SDR only utilizes positive
click feedback to capture the user’s disentangled interests. For fair comparison, we add the feature
interaction module to all the baselines if the model originally does not utilize the user profile.

Implementation and hyper-parameters We implement our method in Tensorflow and use the
Adagrad [51] optimizer for mini-batch gradient descent that is suitable for sparse data, while the
size of each mini-batch is 256. All the mentioned transformer encoders are four-head and one-layer.
We cap the maximum sequential historical behavior length to 30 for all datasets. We fix µ in the
curriculum to 10 and the other hyper-parameters are then tuned using random search. The search
space is listed as follows. More detailed experimental settings can be found in our appendix.

• The number of latent intentions K ∈ {1, 2, · · · , 8}.

• The prior confidence for the unclicked data λ ∈ {0.1, 0.2, · · · , 1.0}.

• The learning rate ∈ {0.0001, 0.001, 0.01, 0.1, 1.0}.

• The hidden size of each field of feature ∈ {32, 64, 128, 256}
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Table 2: Model performance

Dataset
Model Amazon-Beauty Amazon-Sports MovieLens-1M WeChat5D

AUC RelaImpr AUC RelaImpr AUC RelaImpr AUC RelaImpr
DeepFM 0.6975 0.00% 0.7608 0.00% 0.8098 0.00% 0.7219 0.00%
AutoInt 0.6826 -7.57% 0.7575 -1.27% 0.7940 -5.08% 0.7263 1.96%
SASRec 0.7415 22.28% 0.7830 8.52% 0.8826 19.32% 0.7126 -4.18%

DIN 0.7633 33.32% 0.7968 13.80% 0.8760 21.39% 0.7282 2.83%
DFN 0.7670 35.21% 0.7763 5.93% 0.8293 6.31% 0.7329 4.96%
SDR 0.7238 13.30% 0.7972 13.95% 0.8865 24.78% 0.7296 3.45%

CDR (Ours) 0.7991 51.43% 0.8152 20.85% 0.9065 31.24% 0.7622 18.14%

4.2 Recommendation Performance

We evaluate the performance of our proposed method on the classical click-through-rate (CTR)
prediction task and utilize a widely-used metric Area Under Curve (AUC) for evaluation. We
also follow [52] to use the RelaImpr to measure the relative improvements over the base model
(i.e.,DeepFM in our experiment). The results are shown in Table 2.

We observe that our approach outperforms the baselines significantly, both on the dense MovieLens
dataset and the sparse Amazon and WeChat5D dataset. We can see that on the MovieLens dataset
where each user has rich historical behaviors, the models that utilize the sequential historical behavior
obtain much better performance. However, DFN fails to accurately capture the user’s interests
compared to other sequential models in MovieLens-1M. This is likely because DFN uses three kinds
of feedback and in this dataset, the user has rich feedback that contains more noise (introduced by
more unclick behavior), while DFN fails to filter the noise. Our method performs best on datasets
that have different sparsity, mainly benefiting from both our model design and the curriculum training
strategy, which is discussed in Section 4.3 and Section 4.4, respectively.

4.3 Multi-feedback

We validate the effectiveness of our method on capturing the user’s preference from different kinds
of feedback. We compare the following four situations, our complete method (complete), our
model without curriculum (w/o CL), our model that only utilizes the clicked historical feedback
without curriculum (click), and our model that directly utilizes the clicked and unclicked historical
feedback(i.e, the output of the C-Encoder and U-Encoder) to aggregate the user’s intentions without
curriculum (c&un). The result is shown in Table 3.

Table 3: Effectiveness of our model components

Dataset
Model Amazon-Beauty Amazon-Sports MovieLens-1M WeChat5D

AUC RelaImpr AUC RelaImpr AUC RelaImpr AUC RelaImpr
w/o CL 0.7914 47.56% 0.8083 18.22% 0.8972 28.22% 0.7548 14.82%

click 0.7477 25.43% 0.8006 15.26% 0.8879 25.22% 0.7347 5.76%
c&un 0.7477 25.42% 0.7969 13.86% 0.8854 24.40% 0.7340 5.42%

complete 0.7991 51.43% 0.8152 20.85% 0.9065 31.24% 0.7622 18.14%

By comparing the click and c&un results, we conclude that directly utilizing the unclick historical
behavior will not improve the model performance. A possible reason is that the noise in unclick
feedback will prevent the model from capturing the user’s true interests. However, with our proposed
co-filtering mechanism to filter the noise and locate the user’s true preference, the model could more
precisely capture the user’s intentions and bring higher performance (comparing the results of w/o
CL with that of c&un). Furthermore, the results of complete and w/o CL indicate that the curriculum
learning strategy takes a further step to help the model to learn better parameters.

4.4 Curriculum Exploration

In this part, we explore what kind of curriculum strategy would benefit our model. We respectively
explore the impact of the curriculum difficulty thre and the curriculum learning speed τ .
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Impact of Curriculum Difficulty As the difficulty of our curriculum is controlled by the parameter
thre (larger thre means curriculum of higher difficulty), we set different values for thre to train
our model, while fixing the other hyper-parameters the same as the random grid search result. The
performance of the model trained with different values of thre is shown in Fig 2(a). The results
on Amazon Sports dataset show the typical “easy-to-hard” curriculum pattern [31]. Learning from
the easier samples first will make the objective smoother, thus more easily reaching the global
optimal. In contrast, the results on the Amazon Beauty dataset show a different curriculum scenario:
although learning easy samples first could achieve comparably good performance, learning from
the samples that have difficulty of about 0.8 could lead to better performance. It matches the spirits
of “hard example mining” [37], focusing more on the harder samples that are more informative
for the model helps the model to discriminate the samples better. Although the results on the two
datasets show that they have different suitable curriculum, there is one phenomenon in common,
curriculum concentrating on the too hard samples (thre = 1.0) results in bad performance. This is
quite reasonable for our scenario, because there exists label-level noise. While the noisy data always
cause higher prediction error than the clean data [53], focusing on the noisy data will absolutely cause
the learned parameters sub-optimal.

Impact of Curriculum Speed Fixing the most suitable curriculum difficulty thre, we change the
hyper-parameter τ to see at what pace the model should learn. Smaller τ means faster adapting to
all the samples considering that smaller τ will make the Gaussian function smooth faster. From the
results in Fig 2(b), we can see that too fast or too slow curriculum is not good enough, and the best
paces for different datasets are different. Moreover, we observe that if τ equals 1, the performance on
both datasets will drop4. This phenomenon is easy to understand from human learning. If we always
concentrate on the problems of some particular level of difficulty, we cannot perform well in exams
when the problems of different levels of difficulty are present to us. For the Amazon Sports dataset,
since we fix thre = 0.0, it always concentrates on the easiest samples and hardly learns the more
difficult samples, and thus suffer dramatically performance drop when test. While for the Amazon
Beauty dataset, since thre = 0.8, it more focuses on its errors during all the training process, and
thus not suffers as much performance drop as the Amazon Sports dataset.

4.5 Other Studies on Explainability

Disentangled Intentions We validate the disentanglement of our learned different intentions. We
calculate the similarity between each item and each of K prototype intention, and assign each item
to the intention that has the highest similarity with it. Then under each intention, we calculate the
number of items belonging to each item category and plot the results in Figure 4. We can see that
the learned intentions have disentangled meanings. For example, in Figure 4(d), intention 0 means
interests in “Sports”, while intention 5 mainly means preference towards “Entertainment”. However,
the disentanglement on the MovienLens-1M dataset is not so promising, almost all intentions are
highly related to “Comedy”, “Action”, and “drama”. This phenomenon is probably because the
long historical behavior in MovieLens-1M brings great challenges for disentanglement as mentioned
in [9].

Mining Interests from Unclick Sequence We also conduct an ablation study to validate our claim
that there also exist user’s interests in the unclick sequence and our model can locate these interests
from these noisy data. One example is shown in Figure 3 and we can see that this user clicked
topics about “Social livelihood”, “Technology” and “Human history”. Our interests mining algorithm
discovers the user’s interests in “International News” and “Education” from the unclick feedback.
When the candidate item about “International News” comes, our model can make the right prediction
based on these located interests, showing that our model could mine the user’s true interests that do
not hide in the clicked history from the user’s unclick history, thus capturing users’ comprehensive
and accurate intentions.

4we don’t plot the performance on Amazon Sports dataset because its performance drops to 0.5645 when τ
equals 1.0.
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5 Conclusion

In this paper, we propose to learn disentangled representations for user’s intentions from multi-
feedback. The proposed routing mechanism models the complex relations among multi-feedback and
various user intentions, and tackles the impact of noise brought by the multi-feedback. Experimental
results show that the learned disentangled representations from multi-feedback could capture compre-
hensive user intentions and consequently improve the recommendation performance. Moreover, the
proposed curriculum further alleviates the impact of data with improper labels in different datasets
by adjustable hyperparameters, which can serve as an efficient plug-in for recommendation models.
Future work may include explicitly locating the noisy sample labels in multi-feedback data.
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