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ABSTRACT

The social media prediction task is aiming at predicting content
popularity which includes social multimedia data such as photos,
videos, and news. The task can not only help make better decisions
for recommendation, but also reveals the public attention from evo-
lutionary social systems. In this paper, we propose a novel approach
named curriculum learning for wide multimedia-based transformer
with graph target detection (CL-WMTG). The curriculum learn-
ing is designed for the transformer to improve the efficiency of
model convergence. The mechanism of wide multimedia-based
transformer is to make the model capable of learning cross informa-
tion from text, pictures and other features(e.g. categories, location).
Moreover, the graph target detection part can extract different fea-
tures in the picture by pretrained model and reconstruct the features
with a homogeneous graph network. We achieved third place in
the SMP Challenge 2020.
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1 INTRODUCTION

In the past decade, social media has become one of the increasingly
popular components of our everyday lives. Social media platforms,
such as Twitter, Facebook and Flickr, have provided a context where
people can share the information, ideas and other forms of expres-
sion across the world. However, among the billions of posts, only
a few of them have become popular, which raises the question of
how to predict if one post can go virus online. In the social media
prediction (SMP) task of ACM multimedia 2020 challenge, the goal
is to predict the popularity of each posts and the data is provided
by Flickr[18-20].

Features are important on social media prediction. User profile
reflects the user’s popularity on social media, including their posted
images, timezone and whether it is belong to pro number. Categories
and subcategories are also important features to the popularity. In
this competition, there are 11 classes of the first level category, 77
classes in the second level category or subcategory, 668 different
classes in third level category or concepts. We propose a novel
approach named curriculum learning for wide multimedia-based
transformer with graph target detection (CL-WMTG). Besides, we
also use the external data as pretrained DenseNet[9] and Bottom-
Up and Top-Down object detection model[1] for extracting image
features. We use relatively simple features for prediction, how-
ever, some sophisticated approaches are adopted for social media
prediction as well.

The main contributions of this work are as follows:

1. The graph part with multimedia helps improve the under-
standing ability of the model.

2. We are the first one to propose a curriculum learning way to
enhance the performance of the multimedia-based transformer.

The rest of this paper is organized as follows. Section 2 includes
related works about prediction methods of social network and
deep learning models. Section 3 shows the method in detail. The
experiment about our method has been conducted and presented
in Section 4. Finally, a summary is presented in Section 5.
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2 RELATED WORK

In recent years, a variety of studies have been conducted on how
to make predictions based on the data from Flickr social media,
such as predicting the popularity. In this paper, we mainly focus on
the popularity-related prediction tasks on social media. According
to the main forms of the dataset, which using Flickr social media
data in text and image forms, we design our model by investigating
some popular deep learning models and related methods.

2.1 Conventional prediction methods

There are a lot of conventional methods which can be used on social
media prediction. For example, regression methods are used for
predicting some trends such as popularity by analyzing relationship
between the dependent variable and one or more independent
variables. Besides, Bayes classifiers are used to distinguish features.
K-nearest neighbor classifiers perform a function by clustering the
similar features. For the sake of briefness, other frequently used
methods for social media prediction such as decision tree will not
be stated here in details[24].

2.2 Popularity-related prediction methods

The prediction of popularity is the key task in the realm of social
media analytic. The data provided by Flickr offers photo-sharing
services with text descriptions, which has drawn many scholars’
research interesting, such as event detection [22, 23] and popularity
prediction. Kim et al. proposed a joint photo stream and blog post
framework based on support vector machine[10], which improves
the performance on exploration and summarization tasks after
using both posted texts and photo streams.

Noisy and a small amount of data are another two issues, which
may weaken the performance of prediction models. To overcome
these difficulties, Chen et al. proposed a popularity prediction model
which incorporated attention mechanism to focus on more informa-
tive parts and suppress noisy [4]. Gayberi et al. combined various
types of features such as enriched user and post, using more vi-
sual features of images to produce a significantly larger dataset
compared to previous studies. [5]

Besides,to make the sequential prediction of popularity, Wu et
al. proposed a novel prediction framework called deep temporal
context networks (DTCN) by incorporating both temporal context
and temporal attention into account.[19]

2.3 Deep learning models

Recently, deep learning has become a frequently-used technique
to address complicated tasks in a variety of areas. For popularity
prediction, recurrent neural networks (RNN) can be utilized to
capture temporal dependence and make more precise predictions by
taking advantage of its modeling in sequence data[14]. In addition,
adopting neural networks as a transformer to leverage various
features is also an effective approach for popularity prediction,
including cascade path[8], cascade graph([3], and multi-modality
information[19]. In addition, the transformer can also be used to
extract the sequential features[21].

It’s worth mentioning that the emergence and development of
convolution neural networks(CNN) have promoted image recog-
nition accuracy for popularity prediction on social media pictures.
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Krizhevsky et al.[11] trained a deep CNN to classify the 1.2 million
high-resolution images in ImageNet, one of the most popular and
largest database for image recognition, and perform well by reduc-
ing the error rate to a relatively low level. Furthermore, Szegedy
designed a deep CNN architecture named as Inception[16], which
achieved a higher accuracy than the Regions with convolutional
neural networks (R-CNN) proposed by Girshick et al. for detection
and classification tasks in ImageNet.

3 METHODOLOGY
3.1 Graph Aggregation

We can obtain the image features by using the target detection
pretrained model [1]. Using the extracted features is possible to
be similar from an object image to the another image. However,
even the same objects in different photos have complete different
meanings. Since the context will affect the meaning associated with
object. The meaning of the car in the picture which contains trees
and river can be totally different from the picture which contains
city bridge and buildings. Effectively illustrating different meanings
of an object is the main challenge in this work.

A graph-based structure is designed for learning the relationship
between an object and surroundings, which can update the features
during learning process. Let F € REX4 denote K objects which
have d dimensional feature. The object image feature is defined as
Fo = {f].17, ..., fl‘(’o}, Graph weight G € REXK shows the relation
matrix between K objects. The graph is a fully connected graph,
showing the global relationship among different relations. The
graph weight G is defined as:

G = ¢(Fo) - Y(Fo)T
$(Fo) = Fo - Wi +b; (2)
l//(F(J):Fo'V‘/j‘"bj (3)

Consider W;, Wj € R9*d and the b;, bj e R as graph pre-parameters.
With the graph weights G for enhancing the features by aggregating
related objects. The enhanced feature is defined as F:

ﬁ0:G~F0-M+b[,

(1)

4)

where W € R4 and b e R4 The object image feature F, not only
contains its own information, but also the sourroudings information.
The graph-based combination of the relation features can explain
the difference of an object in different pictures.

3.2 Wide Multimedia-based Transformer

The structure of the transformer is widely known in concept among
the field of natural language processing. Transformer [17] is the
first transduction model which entirely relies on self-attention to
compute representations of its input and output without using se-
quence aligned RNNs or convolution. The multi-head attention
structure in the transformer can model the correlations between
different feature fields and expand the model’s ability to focus on
different cross attention fields. The feed forward neutral network
with residual structure can map the result of attention to a more
complex feature. It is just as two convolutions with kernel size 1.
The ReLU active function can give the ability of non-linear trans-
formation to the multi-head attention. Since the dimension of the
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Figure 1: The structure of the Curriculum Learning for Wide Multimedia-Based Transformer with Graph Target Detection

feature should be the same when input to the transformer, the out-
put of the graph-based text feature F; should be the same as the
text embedding dimension. We not only take the text and graph
information into consideration but also the continuous features
and categorical features. These features can be represented into
low-dimensional spaces (e.g., word embeddings). Specifically, we
represent all features with a low-dimensional vector, i.e.,

fl =

1

®)

where fil € R9 is the representation of the xil, embedding_matrixl

embedding_matrixl (xf)

is an embedding matrix for field /, and xf is the value in the field.
We concatenate all of the field feature {f 12 f} and stack all
the features as F = {ft,fzt, flitflo fé’ ...,fl‘zo,fl,fz, .., {1}, where
f? is the word embedding of the tag, £ is the graph-aggregated
object image features. The length of the tags is ki and the number
of the objects is ko. The transformer can form high-order features
and determine which feature combinations are meaningful.

F = Transformer (F) ,F € R4, 6)

The multimedia-based transformer combines the different multi-
media information and form the high-order features. Moreover, we
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also design a wide part which directly input the {x'} to the output
dense layer. It can help the model to learn the low-order features, in
order to prevent some low-dimensional information from being lost
in the high-dimensional transformation. We also use the LSTM[6]
to aggregate the output of transformer. The output is defined as:

popularity = W{max_pooling(LSTM(l:")), <, %% ..., xl} +b. (7)

3.3 Curriculum Learning Transformer

Bengio et al. proposed a new learning paradigm called curriculum
learning (CL), in which a model is learned by gradually including
from easy to complex samples during training process in order to
increase the entropy of training samples[2]. We found that dur-
ing the training processing of the model, it is difficult for wide
multimedia-based transformer to learn the features from multime-
dia. However, the tag and object classification are all belong to text
filed, and their spaces of feature are same. According to the tag and
object classification, we design a curriculum learning phase where
the classification and image feature of the object share the same
parameters of the transformer. Compared with the object image
features, the object classification words possess the same feature
space to the tag words but contain less information.
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SCAN[12]
Method Hyperparameter | Wide Feature | Offline SR/MSE | Online SR/MSE
SCAN - False 0.53/1.84 -
VL-BERT head=1,layer=1 False 0.53/1.82 -
CLSTM - False 0.54/1.80 -
DTCN - False 0.63/1.52 0.62/1.50
CatBoost - True 0.62/1.48 0.62/1.56
MT head=1,layer=1 False 0.56/1.61 0.56/1.60
MT head=3,layer=3 False 0.55/1.62 0.55/1.63
MT head=6,layer=12 False 0.52/1.68 -
MTG head=1,layer=1 False 0.57/1.59 0.58/1.58
WMTG head=1,layer=1 True 0.60/1.51 0.60/1.51
CL-WMT head=1,]layer=1 True 0.64/1.44 0.63/1.43
CL-WMTG | head=1,layer=1 True 0.65/1.41 0.65/1.39

We have two training phases. In the first a few epochs, we replace
the object class with object image features, trying to learn the
combination of the image features and the tag features. Next, we
restore the object image features and continue to train the model.
In the first phase, our input feature is:

FPRasel = (£ £, B0 DAY, L O EL T LR (8)

where £V is the embedding of the object class words. At the second
phase, the input feature is the same as F which means:

thasez -F )

Our training process can be concluded as a curriculum learning
which learn the easier first and learn the harder next. Although the
effectiveness of the curriculum learning decays as the the number
of training epochs raises, the score obtained is better than the model
only employing with single phase

4 EXPERIMENT

We explore the spearman’s rho (SR) and the mean absolute error
(MSE) to measure our model performance. Here we compare the
performance of our method with baselines. The results are listed in
Table 1. According to the results from top to bottom, we have the
following observation.

Firstly, we tried some methods like CLSTM[7] and DTCN[19]
as baselines. The proposed multimedia-based transformer (MT)
method consistently outperforms the VL-BERT[15] and the SCAN[12].
We found the less parameters the model has, the better the model
performs. Only one head and one layer of the transformer mecha-
nism can obtain higher SR than the three head and three layer. We
attribute this phenomenon to the small amount of data. The bigger
parameters can be learned better with bigger data.

Secondly, we analysis the graph part and wide part. We gain a rel-
ative improvements of about 3% over multimedia-based transformer
with graph target detection (MTG) and 13% over wide multimedia-
based transformer with graph target detection (WMTG). The wide
part obtain the most benefit. We also try to put features of wide
part into CatBoost[13] and also got a good score. The features
are informative and wide part with transformer can exploit them
deeply.
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At last, the curriculum learning was adopted to the WMTG. The
curriculum learning for wide multimedia-based transformer with
graph target detection(CL-WMTG) obtain the best performance
over all models. Curriculum learning solve the problem that the
model is difficult to converge. Meanwhile, curriculum learning
help the model learn better than directly learning the high-ordered
feature between text and image.

5 CONCLUSION AND FEATURE WORK

The WMTG method proposed by us can significantly improve the
accuracy of the social media prediction. By adding the curriculum
learning, the CL-WMTG model learns better with the multimedia
information, and has brought us to won the third place on SMP
2020 challenge. In the future, we will try to build more effective het-
erogeneous graph with both image objects and tags. Meanwhile, we
would like to find a more useful way to learn the cross information.
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