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ABSTRACT
Real-world super platforms such as Google and WeChat usually
have different recommendation scenarios to provide heterogeneous
items for users’ diverse demands. Multi-domain recommendation
(MDR) is proposed to improve all recommendation domains simul-
taneously, where the key point is to capture informative domain-
specific features from all domains. To address this problem, we pro-
pose a novel Adversarial feature translation (AFT) model for MDR,
which learns the feature translations between different domains
under a generative adversarial network framework. Precisely, in
the multi-domain generator, we propose a domain-specific masked
encoder to highlight inter-domain feature interactions, and then
aggregate these features via a transformer and a domain-specific
attention. In the multi-domain discriminator, we explicitly model
the relationships between item, domain and users’ general/domain-
specific representations with a two-step feature translation inspired
by the knowledge representation learning. In experiments, we eval-
uate AFT on a public and an industrial MDR datasets and achieve
significant improvements. We also conduct an online evaluation on
a real-world MDR system. We further give detailed ablation tests
and model analyses to verify the effectiveness of different compo-
nents. Currently, we have deployed AFT on WeChat Top Stories.
The source code is in https://github.com/xiaobocser/AFT.
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1 INTRODUCTION
Recommendation systems have been widely used in various real-
world scenarios for users to get information and entertainment [14].
In recent years, the Matthew effect has spawned some influential su-
per platforms such as Google, Twitter andWeChat. These platforms
often have various recommendation scenarios to provide heteroge-
neous items. For example, the WeChat platform contains multiple
recommendation functions on different domains including videos,
articles and mini-programs. User behaviors in different recommen-
dation domains could be linked via users’ shared accounts after user
approval. These multi-domain behaviors should be jointly consid-
ered to learn both user’s general and domain-specific preferences,
which are beneficial for recommendation in all domains.

Multi-domain recommendation (MDR) aims to improve all rec-
ommendation domains simultaneously [17]. The key challenge in
MDR is how to capture informative domain-specific features from
all domains for the target domain. An intuitive method is to jointly
combine multi-domain behaviors as input features, while it cares
less about the inter-domain feature interactions. Recently, [10, 32]
jointly consider multiple user behaviors with attention and graph
convolutional networks. Multi-task learning (MTL) is also an effec-
tive method to jointly make full use of multi-domain information
in different domains, where the recommendation in each domain is
treated as a task [15, 16]. A good MDR algorithm should learn the
implicit relationships between heterogeneous features and user be-
haviors in different domains. However, MDR severely suffers from
its inherent sparsity issues, which derive from (1) the sparsity of
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user-item pair-wise click behaviors, and (2) the sparsity of feature
interactions within and between different domains.
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Figure 1: The overall framework of AFT in MDR.

To address these issues and improve all recommendation do-
mains, we propose a novelAdversarial feature translation (AFT)
framework for MDR. As shown in Fig. 1, AFT highlights useful fea-
ture interactions between different domains via a domain-specific
masked encoder and a two-step feature translation under a gen-
erative adversarial network (GAN) framework. Specifically, in the
generator, we first design a domain-specific masked encoder, which
merely masks behaviors in the target domain. It forces AFT to learn
from informative features in other domains. Next, a transformer
extractor and a domain-specific aggregation are conducted to learn
user aggregated preferences for the target domain. These domain-
specific preferences are then used to generate the fake clicked items
which compete with the real clicked items in the discriminator. A
reinforcement learning (RL) method is conducted to update the
generator. In the discriminator, inspired by the triplet-based train-
ing in knowledge representation learning (KRL) [5], we learn item,
domain and users’ general/domain-specific representations in the
same semantic space via two feature translations. These translations
explicitly model the interpretable relations among (item, domain,
user) and (user general preference, domain information, user domain-
specific preference). Precisely, we first combine user preferences on
items and domains to form the user representation, which reflects
the user’s general preferences in all domains. Next, we conduct
the second feature translation from user’s general preferences to
user’s domain-specific preferences through the target domain’s
information. The advantages of AFT mainly locate in three aspects:
(1) the GAN with masking provides sufficient high-quality nega-
tive samples, which alleviate the sparsity and overfitting issues. (2)
The domain-specific masked encoder forces AFT to focus more on
features in other domains, which is beneficial for MDR. (3) The two
explicit feature translations capture interpretable relations between
item, domain and users’ general/domain-specific representations,
which provide a deeper understanding of MDR.

In experiments, we evaluate AFT with competitive baselines
on both large-scale private and public datasets in MDR, achieving
significant improvements on all domains. We also conduct an on-
line evaluation to verify AFT in online scenarios. Ablation tests
and model analyses are also conducted for a better understanding.
Currently, AFT has been deployed on multiple recommendation

domains in matching of WeChat, which is widely used by millions
of users. The main contributions are concluded as follows:

• We propose a novel AFT framework for multi-domain rec-
ommendation. To the best of our knowledge, we are the first
to combine GAN with feature translation in MDR.

• We first propose a novel domain-specific masked encoder in
a GAN training framework to facilitate information flows
between different domains in MDR.

• We design a two-step feature translation to highlight feature
interaction and transfer among item, domain and user.

• AFT achieves the best performances in both online and of-
fline experiments on all domains. We have also deployed
AFT on several real-world recommendation domains.

2 RELATEDWORKS
2.1 Recommendation System
Factorization machine (FM) [20] is a classical model for recommen-
dation. With the thrive of deep learning, NFM [8], AFM [26] and
AutoFIS [14] combine FM with DNN and attention layers. Autoint
[22], BERT4Rec [23], DFN [27], and HRL-Rec [29] further bring
in self-attention for feature and behavior level interactions. TDM
[34] introduces a tree-based structure for all items, which com-
bine matching and ranking in a single model. Recently, adversarial
training has been verified in recommendation [25]. Transfer learn-
ing is also adopted to model different items and scenarios [13, 19].
[7] proposes a translation-based recommendation over personal-
ized sequential behaviors. Inspired by these models, AFT combines
self-attention layers [22] and ConvE [5] under a GAN framework.

Cross-domain recommendation (CDR) is a related task of MDR.
Most CDR works concentrate on improve the target domain’s per-
formance with the help of the auxiliary source domain [18]. Re-
cently, embedding and mapping approaches such as EMCDR [18]
and SSCDR [12] have been well explored in CDR. CATN [31] also
utilizes a transfer network for knowledge transfer. Differing from
CDR that focuses on source-target domain adaptation, our MDR
task aims to jointly improve all results in multiple domains.

2.2 Multi-domain Recommendation
Multi-domain recommendation aims to jointly optimize all domains,
which can be roughly viewed as a sort of combination of CDR and
MTL. MCF [30] considers multiple collaborative filtering (CF) tasks
in different domains simultaneously and exploits the relationships
between domains. [17] facilitates cross-media content information
in MDR. ICAN [28] also focuses on cross-domain field interactions.
There are some works that focus on user’s multiple behaviors (e.g.,
click, unclick, purchase). ATRank [32] models multiple types of
behaviors via self-attention. MBGCN [10] brings in graph convolu-
tional networks. These models can be used in MDR with the behav-
iors replaced by the multi-domain behaviors. Multi-task learning is
also a classical method for MDR. MDR can be regarded as a special
example of MTL, where each domain is viewed as a task. For general
MDR, MMoE [16] models the tradeoffs between domain-specific
objectives and inter-domain relationships with a new Multi-gate
expert strategy, which is more effective when domains are less
related. SNR [15] improves MMoE with sub-networks divided from
the Shared bottom model, which could better model the high-order
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Figure 2: The overall architecture of AFT, which consists of (a) Multi-domain generator and (b) Multi-domain discriminator.

domain-specific interactions. In this work, we implement several
competitive multi-task and multi-domain recommendation models
as baselines. To the best of our knowledge, we are the first to in-
troduce feature translation with domain-specific masked encoder
under the generative adversarial network framework for MDR.

3 MODEL FRAMEWORK
AFT attempts to jointly improve the performances in all domains.
In this section, we will first give a brief introduction to the overall
architecture of AFT (in Sec. 3.1). Next, we will give detailed dis-
cussions on the multi-domain generator and discriminator (in Sec.
3.2 and Sec. 3.3). Finally, we will show its multiple optimization
objectives (in Sec. 3.4).

3.1 Overall Architecture
Figure 2 shows the overall architecture of AFT. Precisely, AFT con-
ducts a GAN framework to learn feature relations between different
domains. It mainly consists of two modules, namely the multi-
domain generator and the multi-domain discriminator. In multi-
domain generator, AFT first conducts a domain-specific masked
encoder to highlight useful target domain related features from
other domains. Second, we use a transformer to model inter-domain
feature interactions. Finally, we jointly combine these interacted
features via a domain-specific attention to generate the top-k fake
clicked items for the target domain. In the multi-domain discrim-
inator, AFT first builds both user’s domain-level and item-level
preferences from user behaviors with the help of transformers. Sec-
ond, inspired by the triplet-based feature interaction in KRL [5],
we conduct a two-step feature translation to learn user general
and domain-specific representations sequentially. Finally, the user
domain-specific representation is used to retrieve appropriate items.
The discriminator is trained under a multi-domain CTR-oriented
objective, while the generator is updated via RL with click-based

rewards. We design different models in generator and discriminator
to enhance feature interactions for model training.

3.2 Multi-domain Generator
The Multi-domain generator aims to generate item candidates in all
domains that users may click. These items are viewed as the “fake”
clicked items used in the discriminator. The inputs mainly contain
users’ click behavior sequences in all domains. Precisely, we set
𝑋 = {𝑋1, · · · , 𝑋𝑛} as the multi-domain behavior matrix, where 𝑋𝑖
indicates the click sequence of the 𝑖-th domain𝑑𝑖 . The target domain
is the 𝑡-th domain that AFT currently recommends for, which is
represented as 𝑑𝑡 . Fig. 2 (a) shows the multi-domain generator.

3.2.1 Domain-specific Masked Encoder. In this encoder, we at-
tempt to extract useful features from each domain. Inspired by the
masked language model in NLP [3], we propose a domain-specific
masked strategy on the target domain. Precisely, for the target
domain 𝑑𝑡 , we randomly sample a position set pos𝑡 in the behavior
sequence 𝑿𝑡 to mask out user behaviors with a certain mask ratio.
The masked behaviors in pos𝑡 are replaced with a [MASK] behavior
(i.e., zero-padding). Note that we only conduct the masking opera-
tion on the target domain, since we want to highlight inter-domain
information interactions by decreasing the information in 𝑑𝑡 . We
generate the masked behavior sequence 𝑿mask

𝑡 in 𝑑𝑡 as:

𝑿mask
𝑡 = REPLACE(𝑿𝑡 , pos𝑡 , [MASK]) . (1)

The advantages of the masked strategy locate in two aspects: (1) it
forces AFT to focus more on other domains when recommending
for the target domain, which can enrich inter-domain information
interactions between the click behavior in the target domain and
the features in other domains. (2) The masked strategy brings in
additional variances to user behavior learning in the target domain.
It may take more time for the multi-domain generator to converge,
but it can also prevent overfitting and improve both robustness and
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generalization ability in multi-domain preference modeling. The
aggregated feature in the 𝑖-th domain 𝒇𝑖 is then calculated as:

𝒇𝑖 = Average_pooling(𝑿 ′
𝑖 ), (2)

in which 𝑿 ′
𝑖
= 𝑿mask

𝑖
when the 𝑖-th domain is the target domain,

and otherwise 𝑿 ′
𝑖
= 𝑿𝑖 . We choose the simple average pooling as

the behavior aggregator, making a compromise between efficiency
and effectiveness. More complicated encoders are also welcomed.

3.2.2 Multi-domain Feature Aggregator. This module aims to cal-
culate the feature interactions between different domains to get
the final users’ aggregated preferences for 𝑑𝑡 . First, we follow the
Transformer layer [24] and take all domains’ aggregated features
{𝒇1, · · · ,𝒇𝑛} as inputs to form the interacted features. The 𝑖-th in-
teracted feature 𝒇𝑖 is defined as follows:

𝒇𝑖 = Transformer(𝒇𝑖 ). (3)

Next, we utilize an attention to highlight the target domain infor-
mation in all interacted features from various domains. The user
aggregated preference 𝒉𝑡 for domain 𝑑𝑡 is formalized as follows:

𝒉𝑡 = MLP(
𝑛∑︁
𝑖=1

𝛼𝑖𝒇𝑖 ), 𝛼𝑖 = Softmax(𝒇⊤𝑖 (𝒇𝑡 + 𝒅𝑡 )), (4)

where 𝒅𝑡 is the target domain’s feature, and 𝒇𝑡 is the item feature of
𝑑𝑡 in Eq. (2). We conduct a two-layer MLP after the domain-specific
attention to get 𝒉𝑡 . This domain-specific attention can be viewed as
an amplifier for the target domain 𝑑𝑡 . The user aggregated prefer-
ence 𝒉𝑡 is then regarded as the user domain-specific representation
in the generator, which derives from all domains’ features.

Finally, with the user domain-specific representation 𝒉𝑡 , the click
probability 𝑝𝑔 (𝑒𝑖 |𝑢) of item 𝑒𝑖 ∈ 𝐸 and user 𝑢 in 𝑑𝑡 is defined as:

𝑝𝑔 (𝑒𝑖 |𝑢) = Sigmoid(𝒉⊤𝑡 𝒆𝑖 ). (5)

The user domain-specific representation 𝒉𝑡 is fed into a fast nearest
neighbor server such as FAISS [11] to retrieve top-k item candidates
of the 𝑡-th domain according to 𝑝𝑔 (𝑒𝑖 |𝑢). These top-k candidates
in different domains are used as “fake” clicked instances to train
the discriminator. Following [25, 33], we utilize the top-k nearest
items instead of directly regarding the virtual embedding 𝒉𝑡 as the
“fake” clicked items, for the realistic item embeddings are more chal-
lenging for the discriminator to distinguish. Sec. 4.2 gives detailed
analyses of the top-k RL-based optimization.

3.3 Multi-domain Discriminator
The Multi-domain discriminator aims to distinguish user’s real
clicked items from the fake clicked items provided by the generator.
We propose a novel two-step feature translation to explicitly model
the interpretable relations between user, item and domain. Besides
the multi-domain behaviors 𝑿 , we also use the weighted domain
sequence 𝑫 ′ = {𝒅 ′1, · · · , 𝒅

′
𝑛} as our inputs. Precisely, 𝒅 ′

𝑖
= 𝛽𝑖𝒅𝑖

indicates the 𝑖-th domain feature, while 𝛽𝑖 ∈ [0, 1] is a weight that
reflects how many items the user have clicked in 𝑑𝑖 . 𝑿 implies the
fine-grained item-level user preferences, while 𝑫 ′ indicates the
coarse-grained domain-level user preferences. Fig. 2 (b) shows the
detailed architecture of the multi-domain discriminator.

3.3.1 Item/Domain Encoders. Similar to the generator, we use the
average pooling to combine clicked item features in each domain.
We do not use the mask strategy in the discriminator, for we want
to precisely capture user preferences. We build the aggregated item
feature 𝒇𝑖 in the 𝑖-th domain as follows:

𝒇𝑖 = Average_pooling(𝑿𝑖 ) . (6)

𝒇𝑖 can be regarded as the item-level user preference for the 𝑖-th
domain. Next, we conduct two transformer layers for both item
and domain feature interactions across domains. We have:

𝒇𝑖 = Transformer(𝒇𝑖 ), 𝒅𝑖 = Transformer(𝒅 ′𝑖 ) . (7)

These two transformers enable sufficient feature interactions across
different domains. We then concatenate the interacted domain/item
embeddings in all domains as follows:

𝒇 = Concat(𝒇1, · · · ,𝒇𝑛), 𝒅 = Concat(𝒅1, · · · , 𝒅𝑛). (8)

Here, 𝒇 and 𝒅 are the final item and domain representations for
user 𝑢, which indicate user preferences at item and domain levels.

3.3.2 Two-step Feature Translation. In knowledge representation
learning, translation-basedmethods like TransE [2] and convolution-
based methods like ConvE [5] transfer the head entity 𝒆ℎ into the
tail entity 𝒆𝑡 through the relation 𝒓 to learn knowledge representa-
tions (e.g., in TransE we have 𝒆ℎ + 𝒓 ≈ 𝒆𝑡 ). Inspired by the successes
of triplet-based transformation, we propose a new two-step feature
translation specially designed for MDRwith an effective KRL model
ConvE [5]. In ConvE, 𝒆𝑡 can be translated from 𝒆ℎ via 𝒓 as:

𝒆𝑡 = ConvE(𝒆ℎ, 𝒓) = Flatten(CNN(𝑓 (𝒆ℎ, 𝒓)))𝑾𝑐 , (9)

where 𝑓 (𝒆ℎ, 𝒓) is a 2D reshaping and concatenation function. It
first converts the embeddings 𝒆ℎ, 𝒓 ∈ R𝑘 into 2D matrices 𝒆ℎ, 𝒓 ∈
R𝑘𝑤×𝑘ℎ , where 𝑘 = 𝑘𝑤𝑘ℎ . Next, 𝒆ℎ and 𝒓 are concatenated row by
row as the same alternating pattern in [5] to get a mixed feature
matrix. This matrix is then fed into a 2D convolutional layer and re-
shape to a vector via the Flatten(·) function and a projection matrix
𝑾𝑐 . Compared to other 1D feature translation such as the addition
in TransE, the 2D convolution enables more sufficient element-wise
feature interactions between 𝒆ℎ and 𝒓 when generating 𝒆𝑡 , which
improves feature translation.

In AFT, we assume that: (1) the user general preference should
consist of both item-level and domain-level user preferences that
capture user preferences in different granularities. And (2) the user
domain-specific preference could be translated from the user gen-
eral preference via the target domain information. Therefore, simi-
lar to the (𝒆ℎ , 𝒓 , 𝒆𝑡 ) triple translation in KRL, we conduct two feature
triples for translations noted as (item-level preference, domain-level
preference, user general preference) and (user general preference, do-
main information, user domain-specific preference). Formally, we
first learn the user general representation 𝒖𝑔 as follows:

𝒖𝑔 = ConvE(𝒇 , 𝒅). (10)

The user general representation consists of both fine-grained item-
level preference 𝒇 and coarse-grained domain-level preference 𝒅.
We then translate 𝒖𝑔 into the user domain-specific representation 𝒖𝑡
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via the target domain information, which is built from domain-level
feature 𝒅𝑡 and item-level feature 𝒇𝑡 as follows:

𝒖𝑡 = ConvE(𝒖𝑔,Concat(𝒅𝑡 ,𝒇𝑡 )𝑾𝑑 ) . (11)

Differing from 𝒇𝑡 that simply considers user behaviors in the target
domain, 𝒖𝑡 combines different item-level and domain-level user
preferences in all domains for the target domain 𝑑𝑡 with two feature
translations. Finally, 𝒖𝑡 is used to generate a ranking score 𝑝𝑑 (𝑒𝑖 |𝑢)
with the item candidate 𝑒𝑖 . We have:

𝑝𝑑 (𝑒𝑖 |𝑢) = Sigmoid(𝒖⊤𝑡 𝒆𝑖 ), (12)

𝑝𝑑 (𝑒𝑖 |𝑢) indicates the predicted click probability of item 𝑒𝑖 for 𝑢 in
𝑑𝑡 given by the discriminator. An item that is more similar to the
user domain-specific representation 𝒖𝑡 will get a higher score.

3.4 Optimization Objectives
We conduct a GAN framework to extract domain-specific prefer-
ences. The overall loss function of AFT mainly consists of three
parts for the generator, discriminator, and dissimilarity.
Discriminator loss. The discriminator loss 𝐿𝐷 is the widely-used
CTR-oriented objective with the click probability 𝑝𝑑 (𝑒𝑖 |𝑢) as:

𝐿𝐷 = − 1
𝑁𝑎𝑙𝑙

(
∑︁
𝑆𝑝

log𝑝𝑑 (𝑒𝑖 |𝑢) +
∑︁
𝑆𝑛

log(1 − 𝑝𝑑 (𝑒𝑖 |𝑢))) . (13)

𝑆𝑝 and 𝑆𝑛 are the positive and negative sets of all domains. (𝑒𝑖 , 𝑢) ∈
𝑆𝑝 indicates that 𝑒𝑖 is clicked by 𝑢 (viewed as a positive sample),
while (𝑒𝑖 , 𝑢) ∈ 𝑆𝑛 means that 𝑒𝑖 is not clicked or is given by the gen-
erator (viewed as a negative sample). 𝑆𝑔 is the set whose instances
are given by the generator. The 𝐿𝐷 loss function implies that the
discriminator aims to distinguish real clicked items from generated
“fake” clicked items. Note that we remove all generated items in 𝑆𝑔
which are actually positive instances clicked by the user.
Generator loss. For the generator, since we utilize the discrete
top-k nearest items as the fake clicked items to train our discrimi-
nator, AFT cannot update the generator via the classical minimax
game. Instead, we conduct a REINFORCE-based RL method also
used in [25], which directly uses the click probability 𝑝𝑑 (𝑒𝑖 |𝑢) in
discriminator as the reward to train the generator. Precisely, for
each action-state pair (𝑒𝑖 , 𝑢) ∈ 𝑆𝑔 , we set its Q-value 𝑄 (𝑒𝑖 , 𝑢) as
𝑝𝑑 (𝑒𝑖 |𝑢). The loss function of the generator 𝐿𝐺 is defined as:

𝐿𝐺 = − 1
𝑁𝑔

∑︁
𝑆𝑔

𝑝𝑔 (𝑒𝑖 |𝑢)𝑄 (𝑒𝑖 , 𝑢), 𝑄 (𝑒𝑖 , 𝑢) = 𝑝𝑑 (𝑒𝑖 |𝑢). (14)

𝑝𝑔 (𝑒𝑖 |𝑢) can be regarded as the action probability of 𝑒𝑖 given 𝑢. The
loss function aims to maximize the expected reward of the click
probability given by the discriminator.
Dissimilarity loss.Moreover, we further propose a dissimilarity
loss 𝐿𝑀 to broaden the gap between the generated “fake” clicked
item set 𝑋𝑑

𝑢 and the real clicked item set 𝑌𝑑
𝑢 for user 𝑢 ∈ 𝑈 and

domain 𝑑 ∈ 𝐷 . It encourages the generator to provide more diverse
negative samples, which are beneficial for the discriminator training
(especially essential in the matching module). We use the Maximum
Mean Discrepancy (MMD) loss [6] to measure the dissimilarity
between fake and real clicked item distributions, noted as:

𝐿𝑀𝑀𝐷 = −
∑︁
𝑢∈𝑈

∑︁
𝑑∈𝐷

sup𝑓 ∈F | |E[𝑓 (𝑋𝑑
𝑢 )] − E[𝑓 (𝑌𝑑

𝑢 )] | |. (15)

We use the Gaussian kernel 𝑓 ∈ F in Eq. (15). We can find that
the MMD loss 𝐿𝑀𝑀𝐷 attempts to minimize the supremum of the
expectation embeddings’ L1 distances between the real and “fake”
clicked items of 𝑢. It makes the generated items less similar to the
real clicked items, which improves the diversity of themulti-domain
generator. More discussions on the MMD loss are in Sec. 4.2.
Overall loss. The final loss function of AFT is formalized as:

𝐿 = 𝜆𝐷𝐿𝐷 + 𝜆𝐺𝐿𝐺 + 𝜆𝑀𝐿𝑀𝑀𝐷 . (16)

𝜆𝐷 , 𝜆𝐺 and 𝜆𝑀 are empirically set as 1. We use top-5 fake items for
each positive instance to balance 𝐿𝐷 and 𝐿𝐺 training.

4 ONLINE DEPLOYMENT
4.1 Online Serving
We have deployed AFT on a well-known platform named WeChat.
WeChat is one of the most popular instant messaging software in
China, which has more than 1.2 billion active users per mouth. The
WeChat ecosystem contains various (recommendation) functions
containing different domains, including articles, long videos, short
videos, programs and applications.

The online architecture of all recommendation domains mainly
consists of two modules, including a matching module and a rank-
ing module widely used in industry [4]. Matching aims to fast re-
trieve hundreds of candidates from the entire item corpus (usually
containing million-level items) efficiently, while ranking aims to
provide specific item ranks accurately. Precisely, AFT is deployed on
the matching module as an embedding-based retrieval, since both
generator and discriminator will generate a user domain-specific
representation that is suitable for fast retrieval. In online, the dis-
criminator first takes all multi-domain behaviors as inputs and
outputs the user domain-specific representation 𝒖𝑡 as in Eq. (11).
Since Eq. (12) implies that the nearest item of the user domain-
specific representation has the highest predicted click probability,
we can directly use a fast nearest neighbor retrieval tool like FAISS
[11] to generate top-N candidates for the following ranking (we
set 𝑁 = 200 in our online system). The time complexity of online
serving is 𝑂 (log𝑀 +𝑇 ), where log𝑀 is the fast retrieval time cost
of𝑀 item candidates, and𝑇 is the computation cost of one forward
step in the discriminator. It is acceptable for online serving.

4.2 Discussions on AFT Training Stability
The challenges of conducting a stable AFT training mainly locate in
three aspects: (1) AFT uses GAN with RL for model training, which
is powerful but not easy to converge [25]. It is essential to meticu-
lously balance both generator and discriminator during training. (2)
The inherent sparsity of MDR in both user-item click behaviors and
feature interactions between different domains further multiplies
the convergence difficulties. (3) Differing from classical GAN-based
models in CV and NLP that usually have universal standards (e.g.,
whether an image indicates a dog), recommendation aims to predict
whether a user will click an item, which can only be judged by the
user himself. However, most fake clicked items predicted by the
generator are not exposed to the user. Directly regarding them as
negative samples for the discriminator may bring in false negative
issues, since they are not real unclicked instances. On the contrary,
users are likely to click similar items as their clicked ones, which
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is the theoretical basis of collaborative filtering. Too much atten-
tion on distinguishing such “fake” items from real clicked ones will
harm the performance, since it may reduce the diversity of negative
samples and disturb the overall hyperplane of user preferences.

To solve these challenges and enable a fast and stable model
convergence, we propose the following solutions: (1) we use top-5
nearest items instead of the generated virtual item embeddings for
discriminator training. In this case, the generator can provide more
realistic and diversified fake clicked items to enable an effective
and stable GAN training, which also alleviates the sparsity issues
in MDR. Moreover, the 5 fake clicked items for each positive in-
stance can well balance the iterative training of the generator and
discriminator. (2) We propose the masked encoder that forces the
generator to focus more on useful features in other domains, which
alleviates the sparsity in inter-domain feature interactions. (3) For
the false negative phenomenon in recommendation, we propose the
dissimilarity loss 𝐿𝑀𝑀𝐷 as a penalty term when the fake clicked
item is too similar to the real clicked one. It encourages the genera-
tor to provide high-quality and diversified negative items, but not
exactly the same as positive instances (which are too challenging
and may be false negative). It is perfectly suitable for matching,
since matching cares whether good items are retrieved in hundreds
of items, not the specific top 10 item ranks.

5 EXPERIMENTS
In experiments, we conduct both offline and online evaluations on
real-world MDR datasets, aiming to answer the following research
questions: (RQ1): How does AFT perform in MDR on large-scale
public and industrial datasets (see Sec. 5.4)? (RQ2): How does AFT
perform in real-world multiple online recommendations with vari-
ous online metrics (see Sec. 5.5)? (RQ3): Are different components
and losses essential in AFT (see Sec. 5.6)? (RQ4): What are the
impacts of different parameters on AFT (see Sec. 5.7)?

5.1 Datasets
We evaluate AFT with baselines on both large-scale public and
private multi-domain recommendation (MDR) datasets.

Netflix. Netflix Prize dataset is a classical dataset widely used
in recommendation [1, 21]. It contains nearly 100 million rating
instances of 480 thousand users. Inspired by [15], we regard the
movie recommendations of different categories as different domains
for MDR. Precisely, we select the history and romance categories,
which contain 3 million rating instances for training and 1.6 million
rating instances for evaluation. We consider the user-movie pairs
with rating ⩾ 3 as the positive instances for MDR, and split these
instances into a train and a test set with the chronological order.

MDR-5B.We build a newMDR-5B dataset with 5 heterogeneous
recommendation domains in WeChat ecosystem. The recommen-
dation domains include article, long video, short video, program and
application. Heterogeneous items in different domains may have
different features. We collect nearly 5 billion user behaviors from
randomly selected 44 million users on 1.5 million items. All data
are preprocessed via data masking to protect user privacy. The
instances of all domains in the former few days are regarded as the
train set, while the randomly selected 11.7 million instances in the
latter few days are regarded as the test set.

Table 1: Statistics of two large-scale datasets.

Dataset # domain # user # item # instance

Netflix 2 480K 3.1K 4.6M
MDR-5B 5 44M 1.5M 5.0B

5.2 Competitors
We implement several competitive recommendation models as base-
lines for MDR, which are categorized into four classes.
Single-domain methods. Single-domain methods only consider
user behaviors in the single target domain and learn each domain
separately. We conduct three classical recommendation models
including FM [20], AFM [26] and AutoInt [22] for this methods,
which are widely verified in industry. Moreover, we implement a
strong session-based recommendation model BERT4Rec [23]. We
use (single) to represent models in their single-domain versions.
Multi-domain methods. These methods jointly consider user be-
haviors in all domains as features for training. We also conduct
FM [20], AFM [26] and AutoInt [22] for multi-domain training.
Moreover, we implement a classical multi-behavior model ATRank
[32], which jointly aggregates user’s multiple behaviors with at-
tention. Note that BERT4Rec cannot be directly used with multiple
behaviors. We use (multi) to represent all multi-domain methods.
Multi-task learning.We implement three classical MTL models
including Shared bottom, MMoE [16] and SNR[15]. MMoE uses a
multi-gate mixture-of-experts strategy, while SNR enhances the
Shared bottom with sub-networks to learn inter-domain features.
Negative sampling. The final AFT model is represented as AFT
(D+G) with both multi-domain discriminator and generator. To
highlight the effectiveness of our multi-domain generator, we im-
plement AFT (D) that only has the discriminator, which uses the
unclicked items as negative samples like other baselines. For further
comparisons, we replace the generator of AFT with a recent strong
negative sampling method hard negative mining (HNM) proposed
in Huang et al. (2020). Other ablation versions are in Sec. 5.6.

5.3 Experimental Settings
In AFT, the maximum length of all user historical behaviors is
50. The dimensions of input item and domain features are 64. We
conduct a 4-layer 8-head transformer for generator and a 1-layer
16-head transformer for discriminator. The mask ratio is set as 15%
in the target domain. The matrix dimensions of two ConvE layers
are 16 × 64. In training, we use Adam with the batch size set as 256.
In online, AFT provides top 200 items as the matching results. All
parameters are optimized with the grid search. All models share
the same settings. Please see Appendix A.1 for more details.

5.4 Offline CTR Prediction (RQ1)
5.4.1 Evaluation Protocol. We conduct the CTR prediction on two
datasets. AFT is deployed in the matching module, which focuses
more on whether good items are retrieved rather than their spe-
cific ranks [4]. Therefore, we use the classical Recall@N metric
(r@N) [1, 21] widely used for evaluating matching models as our
mainmetric. It is measured by the average recall of real clicked items
given top-N items of users. To simulate the real-world scenario in
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Table 2: Offline evaluation on MDR-5B with Recall@N.

Domain article long video short video application program average

Recall@N r@50 r@200 r@50 r@200 r@50 r@200 r@50 r@200 r@50 r@200 r@50 r@200

FM (single) 0.081 0.103 0.107 0.223 0.202 0.266 0.189 0.360 0.093 0.204 0.134 0.231
AFM (single) 0.125 0.173 0.224 0.396 0.245 0.346 0.182 0.431 0.131 0.220 0.181 0.313
AutoInt (single) 0.131 0.187 0.242 0.411 0.214 0.393 0.204 0.446 0.158 0.225 0.190 0.332
BERT4Rec (single) 0.093 0.193 0.396 0.613 0.385 0.436 0.215 0.532 0.199 0.351 0.258 0.425

FM (multi) 0.095 0.188 0.130 0.267 0.354 0.359 0.204 0.391 0.156 0.251 0.188 0.291
AFM (multi) 0.141 0.224 0.282 0.495 0.276 0.412 0.233 0.517 0.132 0.287 0.213 0.387
AutoInt (multi) 0.155 0.285 0.276 0.470 0.301 0.465 0.277 0.532 0.225 0.429 0.247 0.436
ATRank (multi) 0.201 0.332 0.382 0.499 0.314 0.545 0.301 0.581 0.275 0.479 0.295 0.487

Shared bottom 0.171 0.309 0.054 0.181 0.009 0.154 0.316 0.665 0.249 0.513 0.160 0.364
MMoE 0.194 0.342 0.208 0.393 0.032 0.381 0.305 0.653 0.255 0.514 0.199 0.456
SNR 0.135 0.211 0.315 0.487 0.152 0.344 0.286 0.575 0.288 0.529 0.235 0.429

AFT (D) 0.163 0.309 0.451 0.609 0.257 0.554 0.303 0.645 0.291 0.547 0.293 0.533
AFT (D+HNM [9]) 0.255 0.405 0.496 0.621 0.388 0.584 0.531 0.746 0.463 0.675 0.427 0.606

AFT (D+G) 0.363 0.523 0.584 0.745 0.467 0.709 0.540 0.786 0.527 0.715 0.496 0.696

matching, we choose r@50/r@200 for MDR-5B and r@20/r@50 for
Netflix. We also evaluate AFT on AUC as a supplement.

5.4.2 Recall@N Results. Table 2 shows the results on MDR-5B, and
Table 3 shows the results on Netflix. We can observe that:

(1) AFT (D+G) achieves the best performances in different r@N of
all domains on both Netflix and MDR-5B. These improvements are
significant with the significance level 𝛼 = 0.01. It indicates that AFT
has successfully learned the implicit laws of feature translations
between item, domain and user under the minimax game, and thus
can better learn user domain-specific preferences from all domains.
AFT has more significant improvements in MDR-5B, since it has
more item candidates and thus is more challenging in matching.

(2) The significant improvements derive from both generator and
discriminator: (a) the domain-specific adversarial training enables
sufficient explorations on all recommendation domains, which is
the dominating reason for the huge improvements. The generated
challenging and diverse fake clicked items can spur the discrimi-
nator to have a better overall understanding of user preferences,
which is especially essential for matching. (b) The domain-specific
masked encoder in generator also compulsorily enriches the inter-
domain information interactions between the click behaviors in
the target domain and the features in other domains by masking
behaviors in the target domain. It can alleviate the serious inherent
sparsity issue in under-trained domains. (c) The two-step feature
translation in discriminator can better extract informative and in-
terpretable translation rules among user, item and domain, which
are beneficial for jointly using multi-domain information. We will
give detailed ablation tests and analyses in Sec. 5.6.

(3) AFT (D+G) outperforms both AFT (D) and AFT (D+HNM)
by a large margin in MDR-5B. It indicates that our generator with
domain-specific masked encoder could provide more informative
negative samples to polish the discriminator’s training. The im-
provements over AFT (D+HNM) reflect the advantages of our
domain-specific generator compared to strong negative sampling
strategies [9] (note that HNM also benefits from the multi-domain

modeling in AFT). Moreover, all AFT models perform better than
other baselines in overall, which verifies the power of the two-step
feature translation in discriminator. In general, MTL methods and
multi-domain methods have better performances. Some baselines
cannot receive consistent improvements on all domains. It indicates
the significance of multiple behaviors in MDR matching.

Table 3: Offline evaluation on Netflix with Recall@N.

Domain Romance History

Recall@N r@20 r@50 r@20 r@50

FM (single) 0.338 0.432 0.588 0.656
AFM (single) 0.455 0.611 0.751 0.846
AutoInt (single) 0.473 0.610 0.711 0.833
BERT4Rec (single) 0.698 0.770 0.891 0.939

FM (multi) 0.393 0.484 0.609 0.689
AFM (multi) 0.487 0.624 0.756 0.852
AutoInt (multi) 0.589 0.683 0.788 0.920
ATRank (multi) 0.613 0.702 0.822 0.935

Shared bottom 0.749 0.837 0.878 0.929
MMoE 0.776 0.860 0.867 0.921
SNR 0.704 0.798 0.897 0.955

AFT (D) 0.755 0.843 0.922 0.971
AFT (D+HNM [9]) 0.767 0.864 0.924 0.973

AFT (D+G) 0.784 0.872 0.926 0.977

5.4.3 AUC Results. In offline evaluation, Recall@N is viewed as the
most essential metric, since we deploy AFT on matching. To verify
AFT from different aspects, we also conduct an evaluation with
AUC, which reflects the probability of clicked items ranking higher
than unclicked items. Table 4 shows the AUC results of AFT and
representative baselines on three domains of MDR-5B (for a better
display). We can observe that: (1) AFT (D+G) still achieves the best

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2970



performances on all domains, significantly outperforms all baselines
including AFT (D+HNM). The improvements on AUC indicate that
AFT can well distinguish unclicked items from clicked ones, which
can also be used in ranking. (2) AFT (D+HNM), ATRank and SNR
achieve relatively good results among baselines, which shows that
multiple behaviors are essential. In general, the conclusions of AUC
and Recall@N are basically consistent.

Table 4: Offline evaluation on MDR-5B with AUC.

Domain article long short

AFM (single) 0.636 0.677 0.652
AutoInt (single) 0.641 0.711 0.646
AFM (multi) 0.650 0.725 0.659
AutoInt (multi) 0.652 0.723 0.670
ATRank (multi) 0.667 0.741 0.678
SNR 0.645 0.735 0.621

AFT (D+HNM [9]) 0.699 0.755 0.713
AFT (D+G) 0.714 0.797 0.720

5.5 Online Evaluation (RQ2)
5.5.1 Evaluation Protocol. We further conduct an online A/B test
to evaluate AFT in real-world scenarios. We have deployed AFT
on multiple recommendation scenarios in WeChat as stated in Sec.
4. In online evaluation, we give the results of two integrated rec-
ommendation feeds in WeChat Top Stories and WeChat Reading as
examples. Both feeds contain three heterogeneous domains includ-
ing article, long video and short video. Precisely, AFT is deployed
as an additional retrieval channel in the matching module, with
the ranking and other matching modules unchanged. The online
matching baseline is an ensemble model containing multiple single-
domain, multi-domain and rule-based methods. In the online A/B
test, we focus on two metrics including the CTR and average click
number per capita (ACN) to measure online accuracy. We conduct
the A/B test for 7 days with nearly 50 million users involved.

5.5.2 Experimental Results. We report the improvement percent-
ages of AFT in Table 5, from which we can know that:

(1) AFT achieves significant improvements on all CTR and ACN
metrics in two scenarios with the significance level 𝛼 = 0.01. It
confirms the power of the generator with domain-specific masked
encoder and the two-step feature translation in online systems.

(2) In WeChat Top Stories, CTR and ACN of cold-start users have
more significant improvements. It indicates that AFT could well
translate user preferences from other domains to the target domain,
which alleviates the sparsity. Therefore, AFT is especially helpful
for cold-start users that have fewer historical behaviors.

(3) WeChat Reading is a new integrated recommendation feed,
where all domains are viewed as cold-start domains. AFT can jointly
learn user domain-specific preferences from user behaviors in ma-
ture domains, which benefits the cold-start domains.

5.5.3 Recommendation Trial. Real-world recommendation of CTR-
oriented objectives usually struggles with the homogenization issue.
To improve the diversity and discover user’s potential interests, we
add a recommendation trial channel in matching, which provides

Table 5: Online A/B tests on WeChat MDR systems.

Scenario All users Cold-start users

CTR ACN CTR ACN

WeChat Top Stories +0.51% +0.48% +1.20% +1.08%

Scenario Main feed Push feed

CTR ACN CTR ACN

WeChat Reading +2.16% +1.67% +13.71% +9.27%

new items not in users’ existing interests. It is similar to the explo-
ration in RL. Specifically, we utilize the fake clicked items provided
by the generator as the recommended results. These items are rec-
ommended by the generator but different from the real clicked ones
due to the dissimilarity loss 𝐿𝑀 , which are both high-quality and
diversified. In online evaluation, we find that AFT achieves 8.51%
improvements on the impression percentage of items with new
interests (noted by new taxonomies), and 168.45% astonishing CTR
improvements in the recommendation trial channel compared with
a simple diversified exploration baseline.

5.6 Ablation Tests (RQ3)
We aim to verify the effectiveness of different components in AFT
via ablation tests. We implement several ablation versions of AFT
without the generator, dissimilarity loss and feature translation
(replaced with attention), and report Recall@200 of four domains
on MDR-5B in Table 6. We can find that: (1) all components are
indispensable in AFT, among which the generator is the dominating
reason for improvements. The first two ablation settings verify the
importance of our GAN and domain-specific masked encoder. It
encourages AFT to consider more information from other domains
to generate informative negative samples, which polishes the dis-
criminator’s training. (2) The feature translation also outperforms
attention-based aggregation by a large margin, which confirms that
our feature translation is very suitable for MDR. (3) The dissimilar-
ity loss broadens the gaps between fake and real clicked items for
MDR. It makes the generator more diversified (which is beneficial
for the discriminator) and the training more robust.

Table 6: Ablation Tests on the MDR-5B dataset.

Domain article long short app

AFT 0.523 0.745 0.709 0.786

– generator 0.309 0.609 0.554 0.645
– domain-specific mask 0.371 0.634 0.628 0.753
– feature translation 0.359 0.673 0.524 0.581
– dissimilarity loss 0.388 0.741 0.597 0.687

5.7 Model Analyses (RQ4)
5.7.1 Analysis on the Mask Ratio. The mask ratio of the domain-
specific masked encoder determines the degree to which the gen-
erator pays attention to other domains’ features when predicting
for the target domain. Fig. 3 (a) shows the r@200 on MDR-5B with
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different mask ratios. We can find that AFT achieves the best perfor-
mance when the mask ratio is set as 15%. A higher mask ratio wipes
out more user behaviors in the target domain and encourages more
concentrations on other domains, which improves the challenges
as well as inter-domain interactions in the fake clicked items. Too
low mask ratios may not make this module function well. On the
contrary, too high mask ratios will prevent AFT to learn from the
target domain. At last, we select 15% as our mask ratio.

5.7.2 Analysis on the Number of Fake Clicked Items. We also eval-
uate the impacts of different numbers of fake clicked items given
by the generator. From Fig. 3 (b) we can find that: the r@200 first
increases and then decreases as the number of generated negative
samples increases from 1 to 20. AFT achieves the best performance
when we use top-5 fake clicked items for the discriminator. It is
because that too few fake clicked items will lead to an insufficient
exploration of diversified negative samples, while too many fake
clicked items will dilute the attention to positive instances. Both
model analyses with different parameters also verify the stability
of AFT in model convergence.

1 0.422 0.609
3 0.489 0.686
5 0.496 0.696
10 0.475 0.654
15 0.457 0.625
20 0.455 0.621
negative_saRecall@50 Recall@200

topk recall@50 Recall@200
5% 0.424 0.582
10% 0.47 0.624
15% 0.496 0.696
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Figure 3: Results of model analyses: (a) AUC with mask ra-
tios. (b) AUC with different fake clicked item numbers.

6 CONCLUSION AND FUTUREWORKS
We propose a novel AFT for MDR, which designs a domain-specific
masked encoder and a two-step feature translation to highlight
the inter-domain feature interactions under an adversarial training
framework. Offline and online evaluations verify the effectiveness
of AFT. AFT has been deployed online, affecting millions of users.

In the future, we will use more sophisticated models for explicit
feature translation, and explore more fine-grained and interpretable
domain interactions. We will also combine other domain adaptation
and pre-training models with AFT for better performances.
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A APPENDIX
A.1 Implementation Details and Motivations
AFT mainly consists of a generator and a discriminator. We use
transformer extractors in both generator and discriminator since
they can effectively learn feature interactions between different
domains. In the two-step feature translation, inspired by the knowl-
edge representation learning method that learns with triples (head
entity, relation, tail entity), we also use similar feature translations
via (item-level preference, domain-level preference, user general prefer-
ence) and (user general preference, domain information, user domain-
specific preference) to model interpretable relations between item,
domain and user. We use ConvE since it is efficient and effective.
Other KRL models could also be easily adopted in the two-step
feature translation. All item and domain embeddings are randomly
initialized. Note that the “translation” in Adversarial feature trans-
lation indicates that “the process of moving something from one
place to another”, not limited to mathematical translation with the
strict linear transformation.

In Sec. 4.2, we bring in detailed discussions on the training chal-
lenges and solutions of AFT. The MMD loss aims to broaden the
distance between the expectations of fake clicked and real clicked
item embedding distributions, which has been widely used in other
works. The key hyper-parameter to keep a fast and stable conver-
gence is the number of fake clicked items provided by the generator.
We combine these generated items with real unclicked items as
negative samples. We have tested the fake clicked item numbers
among {1, 3, 5, 10, 15, 20}, and select the best 5 in the final version.
For model parameters, we introduce most of the essential hyper-
parameters in Sec. 5.3, including embedding dimensions, learning
parameters and weights. We use a grid search for parameter selec-
tion. Note that we cannot choose too large embedding dimensions

for our model, considering the online memory and computation
costs. The final parameters will be listed in the released version of
the source codes. We implement AFT with multi-core GPU, using
Tensorflow 1.4.1 with Linux. The amount of memory is 60G.

A.2 Evaluation Details
In offline evaluation, we conduct five runs and report the average
results. We also conduct significance tests to verify that the im-
provements are significant. For the evaluation metric, we mainly
concentrate on Recall@N since we deploy AFT on the matching
module, which cares whether good items are retrieved in top N
items (N is usually set as several hundred in real-world large-scale
recommendation systems). We use Recall@50 and Recall@200 for
WeChat MDR dataset, and Recall@20 and Recall@50 for Netflix.
Similar evaluation with Recall@N on Netflix is also reported in
Shenbin et al. [21]. We also consider AUC as a supplement to evalu-
ate the overall ranking ability. We select several strong baselines of
all four different method types and report their AUC results in three
domains. We highlight that AFT achieves the best performances
on all five domains of WeChat measured by Recall@N and AUC.
In general, the conclusions of AUC and Recall@N are basically
consistent.

In ablation study, AFT - generator indicates the AFT version
that only uses the discriminator with real unclicked items as neg-
ative samples, which is equivalent to the AFT (D) version. AFT -
domain-specific mask indicates that AFT keeps the generator but
removes the domain-specific masked encoder. AFT - feature trans-
lation indicates that we replace the two-step feature translation
with a domain-specific attention-based aggregation. AFT - dissimi-
larity loss indicates that we only use 𝐿𝐷 and 𝐿𝐺 in training. Other
components remain unchanged in all ablation settings.
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