
Iterative Entity Alignment via Knowledge Embeddings
Hao Zhu1∗, Ruobing Xie1∗, Zhiyuan Liu1,2†, Maosong Sun1,2

1 Department of Computer Science and Technology,
State Key Lab on Intelligent Technology and Systems,

National Lab for Information Science and Technology, Tsinghua University, Beijing, China
2 Jiangsu Collaborative Innovation Center for Language Ability,

Jiangsu Normal University, Xuzhou 221009 China

Abstract

Entity alignment aims to link entities and their
counterparts among multiple knowledge graphs
(KGs). Most existing methods typically rely on
external information of entities such as Wikipedia
links and require costly manual feature construc-
tion to complete alignment. In this paper, we
present a novel approach for entity alignment via
joint knowledge embeddings. Our method jointly
encodes both entities and relations of various KGs
into a unified low-dimensional semantic space ac-
cording to a small seed set of aligned entities. Dur-
ing this process, we can align entities according
to their semantic distance in this joint semantic
space. More specifically, we present an iterative
and parameter sharing method to improve align-
ment performance. Experiment results on real-
world datasets show that, as compared to base-
lines, our method achieves significant improve-
ments on entity alignment, and can further improve
knowledge graph completion performance on vari-
ous KGs with the favor of joint knowledge embed-
dings.

1 Introduction
Knowledge graphs (KG), aiming to organize human
knowledge in structural forms, are playing an increas-
ingly important role as infrastructural facilities of arti-
ficial intelligence and natural language processing. A
typical KG is usually represented using triple facts
of (head entity,relation, tail entity), also abridged as
(h, r, t). Recent years have witnessed the vigorous devel-
opment of large-scale KGs such as Freebase [Bollacker et
al., 2008], DBpedia [Lehmann et al., 2015] and YAGO
[Suchanek et al., 2007]. These KGs provide well-structured
information about entities and relations in the world and are
widely used as prior knowledge in applications such as ques-
tion answering [Yin et al., 2016] and language modeling [Ahn
et al., 2016].
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Figure 1: KG1 and KG2 denote two heterogeneous knowledge
graphs. Solid lines connecting entities and their counterparts demon-
strate alignment seeds, while dashed lines demonstrate counterpart
relationship to be discovered.

Various methods, sources, and languages have been ex-
plored to construct KGs, and most existing KGs are devel-
oped separately. These KGs are inevitably heterogeneous in
surface forms and typically supplementary in contents. It is
thus essential to align entities in multiple KGs and join them
into a unified KG for knowledge-driven applications.

Some efforts have been devoted to knowledge alignment.
These conventional methods usually involve collaborative ef-
forts [Vrandečić and Krötzsch, 2014] or focus on certain
well-structured schemas or ontologies such as infobox in
Wikipedia [Rinser et al., 2013]. These methods incline to use
external information of KGs, which are typically constrained
to either scalability due to intensive human labor, or specific
application scenarios with less flexibility.

Most existing works have not well studied the effective-
ness of rich internal information in KGs for entity alignment.
To better investigate this problem, we formalize entity align-
ment as that given a small seed set of aligned entities; we
link entities and their counterparts among multiple heteroge-
neous KGs solely according to their internal structures. Fig.
1 demonstrates the overall architecture of entity alignment.
Note that, since relations are universal and thus in this paper,
we suppose all relations are already shared among various
KGs.

The key challenge of this task is how to better model
and utilize large-scale structural information of various KGs,
which are always incomplete and even noisy. In this paper,
we present to model internal structural information of KGs



using knowledge representation learning (KRL) and propose
a novel approach for entity alignment with the favor of knowl-
edge embeddings derived from KRL. We extend translation-
based methods (e.g. TransE) [Bordes et al., 2013], one of the
most widely-used KRL approaches, to encode entities and re-
lations of various KGs into a unified low-dimensional vector
space, known as knowledge embeddings. In this semantic
space, those entities of the identical or related meanings tend
to be close to each other. Hence, the counterparts of an entity
are expected to be close to this entity in the semantic space,
and we can simply perform entity alignment between them.

More specifically, our method consists of three parts: (1)
Knowledge Embeddings. We learn both entity and rela-
tion embeddings following the translation-based KRL meth-
ods according to the triple facts in various KGs. (2) Joint
Embeddings. We learn to map knowledge embeddings of
various KGs into a joint semantic space according to a seed
set of known aligned entities. (3) Iterative Alignment. We
iteratively align entities and their counterparts and update the
joint knowledge embeddings by taking those high-confident
aligned entities increasingly found by our method into con-
sideration.

In experiments, we evaluate our method on two tasks in-
cluding entity alignment and heterogeneous knowledge graph
completion. The results show that our method can efficiently
model internal structural information of KGs and discover en-
tity alignments among various KGs. Moreover, the knowl-
edge embeddings learned from heterogeneous KGs can sig-
nificantly improve knowledge completion as compared to
those learned from individual KGs.

2 Related Work
2.1 Knowledge Alignment
In general, conventional knowledge alignment usually in-
volves heavy human collaborative efforts such as crowd-
sourcing [Vrandečić and Krötzsch, 2014] or well-designed
hand-crafted features [Mahdisoltani et al., 2014]. These
works can achieve high alignment accuracies, while
the human-involved approach is time-consuming, labor-
expensive and usually suffers from extension inflexibility.

As for graph-based models, there are also many meth-
ods focusing on using heterogeneous information in differ-
ent knowledge graphs for knowledge alignment. such as
[Nguyen et al., 2011; Wang et al., 2013; Rinser et al., 2013;
Lacoste-Julien et al., 2013]. [Niu et al., 2012; Pershina et al.,
2015] improve the alignment with iterative methods. Though
reaching high precisions, they are usually time-consuming on
large-scale KGs.

As for embedding models, [Chen et al., 2016] directly
uses structural information in KG for multilingual knowledge
alignment based on known aligned triple facts. Moreover,
[Dong et al., 2014] also inspires knowledge alignment with
the collaboration of cross-modal information. Embedding
methods are more suitable for large-scale knowledge graph,
so we follow the fashion of embedding models.

Differing from these methods, we propose a novel embed-
ding approach with iterative entity alignment, which only
uses internal structural information of KGs for knowledge

representation learning. We further propose a soft alignment
strategy marking possible entity alignments with probabili-
ties, which could reconsider existing soft alignments during
certain iterations.

2.2 Knowledge Representation Learning
TransE [Bordes et al., 2013] projects both entities and re-
lations into a continuous low-dimensional vector space, in-
terpreting relations as translating operations between head
and tail entities. TransE assumes that in the vector space
we have h + r ' t, which is simple and effective. How-
ever, TransE only considers individual triples of KGs for rep-
resentation learning, regardless of multi-step relation paths.
To address this issue, [Lin et al., 2015] proposes PTransE to
encode multi-step paths for KRL. There are existing some
other methods to learn knowledge representations: RESCAL
[Nickel et al., 2011; 2012] and HOLE [Nickel et al., 2016] are
based on tensor factorization with relations considered to be
matrices. NTN [Socher et al., 2013] utilizes a neural layer of
relation-specific tensors to jointly model head and tail embed-
dings. In this paper, we extend the most widely-used TransE
and its effective extension PTransE as our KRL methods for
entity alignment.

3 Problem Formulation
We first introduce the notations used in this paper. We de-
scribe knowledge in knowledge graph as triples (h, r, t), in
which h and t denote head and tail entities and r denotes the
relations between entities. A knowledge graph is formalized
as KG = (E,R, T ), where E,R, T are the set of entities,
relations and triples respectively.

Suppose there are multiple knowledge graphs Σ =
{KGi|KGi = (Ei, Ri, Ti)} of heterogenous and comple-
mentary triples. That is, an entity in a KG has its counter-
parts in other KGs in different languages or surface names.
We call these entities synonymous entities. In practice, some
synonymous entities among KGs are already known, defined
as alignment seeds L = {(ei1 , ei2 , . . . , ei|Σ|)|eij ∈ Ej ∧
(e(i1)j 6= e(i2)j ,∀i1 6= i2)}. Each pair of entities from align-
ment seeds is also called aligned entities. The task of entity
alignment is to automatically find and align more synonymous
entities based on known alignment seeds. As compared to the
number of entities, the set of relations is much smaller, which
can be easily aligned manually or automatically. Hence, we
could assume that all of the alignments between relations are
known.

In this paper, we propose our method to solve the follow-
ing issues: (1) aligning entities in various KGs and (2) jointly
learning better knowledge embeddings with heterogeneous
KGs.

4 Method
Without loss of generality, we introduce our method based on
two heterogeneous KGs: KG1 = (E1, R1, T1) and KG2 =
(E2, R2, T2) for entity alignment. Our method will take
the triple facts in these KGs and alignment seeds as inputs
to learn joint knowledge embeddings and align entities with
their counterparts simultaneously.



4.1 Overall Architecture
As mentioned in Section 1, our method consists of three
parts: knowledge embeddings, joint embeddings, and itera-
tive alignment. Hence, we define the objective function of
our method corresponding to the three parts:

L = K+ J + I, (1)

where K, J and I denote the score function of knowledge
embeddings, joint embeddings, and iterative alignment. Fig.
2 demonstrates the overall architecture of our model. In the
following sections, we introduce the three parts in details.

Figure 2: Overall architecture. This figure indicates our method im-
plemented through TransE with Parameter Sharing and Soft Align-
ment. Blue and Red points denote entities from KG1 and KG2 re-
spectively, while gray arrow denotes relations in both KG1 and KG2.
The Solid line and the dashed line between KGs denote alignment
seeds and newly aligned entity pairs during iterative learning. We
use links between KGs and score functions to indicate embedding
sources and corresponding destinations. The same color represents
the same entity/relation and corresponding embeddings.

4.2 Knowledge Embeddings
We obtain knowledge embeddings following the most
widely-used translation-based method TransE and its effec-
tive extension PTransE. This part can also be implemented
through other KRL methods which may be left as future
work.

TransE TransE [Bordes et al., 2013] projects both rela-
tions and entities into the same continuous low-dimension
vector space, in which the relations are considered as translat-
ing vectors from head entities to tail entities. That is, TransE
wants h + r ' t. The energy function is defined as:

E(h, r, t) = ||h+ r− t||. (2)

We utilize a margin-based score function as the training ob-
jective, defined as:

KT =
∑

T∈{T1,T2}

∑
(h,r,t)∈T

L(h, r, t), (3)

where L(h, r, t) is a margin-based loss function with respect
to the triple (h, r, t):

L(h, r, t) =
∑

(h′,r′,t′)∈T−
[γ + E(h, r, t)− E(h′, r′, t′)]+, (4)

where [x]+ = max{0, x} represents the maximum between
0 and x. T− stands for the negative sample set of T , define

as follows:
T− = {(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E}

∪{(h, r′, t)|r′ ∈ R}, (h, r, t) ∈ T.
(5)

This indicates one of three components in a triple is randomly
replaced by others.

PTransE TransE achieves significant performance in many
tasks such as knowledge graph completion as compared to
conventional methods. However, TransE neglects important
multi-step path information in KGs and struggles with mod-
eling complicated relations. For instance, (e1, r1, e2) and
(e2, r2, e3) may reveal a new fact (e1, r1 ◦ r2, e3), where ◦
is a certain function that composes the two relations.

As demonstrated in PTransE [Lin et al., 2015], relation
paths can significantly improve the performance of TransE.
Following PTransE, we define the relation path as p = r1 ◦r2
and P (h, t) = {p|∀e ∈ E, r1, r2 ∈ R, (h, r1, e), (e, r2, t) ∈
T, p = r1 ◦ r2}. In PTransE, if a relation path plays the same
role as a relation, that is, p ∈ P (h, t) and (h, r, t) ∈ T , we
define the path embedding as p ' r. The energy function is
defined as:

E(p, r) = ||p− r|| = ||p− (t− h)|| = E(h, p, t). (6)

As will be shown in our experiments, PTransE takes multi-
step path information into consideration and can thus achieve
better performances for entity alignment.

The score function of PTransE is defined as appending a
path-relation regularization term to that of TransE:

KP = KT +
∑

T∈{T1,T2}

∑
(h,r,t)∈T

[
1

Z

∑
p∈P (h,t)

R(p|h, t)L(p, r)],

(7)
where L(p, r) is a margin-based loss function with respect to
the pair (p, r). Following [Lin et al., 2015], R(p|h, t) indi-
cates the reliability of the path p given the entity pair (h, t).
Z =

∑
p∈P (h,t)R(p|h, t) is a normalization factor. We fur-

ther define L(p, r) as a margin-based loss function:

L(p, r) =
∑

(h,r′,t)∈T−
[γ + E(p, r)− E(p, r′)]+. (8)

4.3 Joint Embeddings
The aforementioned knowledge embeddings are typically
learned separately in different KGs. For entity alignment, we
have to join these knowledge embeddings into a unified se-
mantic space. We perform joint embeddings based on align-
ment seeds to accomplish this goal. We propose three models
for joint embeddings, which are introduced in details as fol-
lows.

Translation-based Model Inspired by translation-based
KRL methods such as TransE, it is straightforward to re-
gard the alignment as a special relation between entities, and
perform an alignment-specific translation operation between
aligned entities to learn joint embeddings.

Formally, given two aligned entities e1 ∈ E1 and e2 ∈ E2,
we assume there is an alignment relation r(E1→E2) so that
e1 + r(E1→E2) ' e2. The energy function of joint embed-
dings is thus defined as:

E(e1, e2) = ||e1 + r(E1→E2) − e2||. (9)



Linear Transformation Model We can also learn a lin-
ear transformation between knowledge embeddings of vari-
ous KGs. Given two aligned entities e1 ∈ E1 and e2 ∈
E2, we define a transformation matrix M(E1→E2), so that
M(E1→E2)e1 ' e2. This idea and Translation-based (TB)
Model have also been explored in [Chen et al., 2016] for en-
tity alignment. Hence, we define the energy function as:

E(e1, e2) = ||M(E1→E2)e1 − e2||. (10)

For both the Translation-based Model and the Linear
Transformation (LT) Model, we can define the score function
as the sum of energy functions over alignment seeds, which
can be formalized as:

JT/L =
∑

(e1,e2)∈L

αE(e1, e2), (11)

where α is a weighted factor.
Parameter Sharing Model Those two models mentioned

above can be regarded as regularization to learning knowl-
edge embeddings. Since aligned entities have identical mean-
ings in KGs, it is also intuitive for us to make those aligned
entities share the same embeddings. Formally, for each
aligned entity pair (e1, e2), we define:

e1 ≡ e2, (e1, e2) ∈ L. (12)

The Parameter Sharing (PS) Model is simple and effective to
calibrate knowledge embeddings of KG1 and KG2 into the
same semantic space. In this model, there are no regulariza-
tion variables, so its score function JP = 0. The idea of
parameter sharing has also been mentioned in [Goodfellow
et al., 2016] as an effective alternative to regularization for
utilizing prior knowledge about variable dependency.

4.4 Iterative Alignment
Based on knowledge embeddings and joint embeddings, we
can perform entity alignment in the unified semantic space ac-
cording to semantic distances between entities. The semantic
distance is calculated in different ways with respect to various
models of joint embeddings. For Translation-based Model
and Linear Transformation Model, the distance is calculated
using the energy functions defined in Eq. (9) and Eq. (10).
For Parameter Sharing Model, the distance is calculated as
E(e1, e2) = ||e1 − e2||L1/L2,∀e1 ∈ E1, e2 ∈ E2.

In this way, for each non-aligned entity e1 in one KG, we
find the nearest non-aligned entity ê2 from another KG: ê2 =
argmine2(E(e1, e2)). We also define a distance threshold
θ as a hyper-parameter, and if E(e1, ê2) < θ, we will be
confident that ê2 is very likely to be the counterpart of e1,
otherwise we will not regard ê2 as the counterpart of e1. We
call these entities newly aligned entities.

It is intuitive that, newly aligned entities can help update
joint embeddings and find more entities to align. Hence, we
propose iterative entity alignment and design two strategies
for iterative learning of joint embeddings and entity align-
ment.

Hard Alignment For Parameter Sharing Model, we can
simply apply the rule of parameter sharing for those newly
aligned entities. That is, we append each newly aligned entity
pair (e1, e2) into the alignment seeds L, and simply force e1

and e2 ← 1
2 (e1 + e2). Afterwards, we update joint embed-

dings according to the updated seed set L. For Hard Align-
ment, newly aligned entity pairs are directly added into L, so
the score function of Hard Alignment (HA) is IH = 0.

Soft Alignment Since there are inevitable errors in entity
alignment, Hard Alignment may suffer from error propaga-
tion when introducing wrong alignments. For example, since
both George W. Bush and Bill Clinton were presidents of
the United States, they exhibit similar embeddings. Suppose
George W. Bush in KG1 and Bill Clinton in KG2 are occa-
sionally aligned by Hard Alignment, it may correspondingly
force the embeddings of their birth places, New Haven in KG1
and Hope in KG2 much closer, leading to more errors.

To address this issue, we propose Soft Alignment (SA) by
assigning a reliability score to each newly aligned entities.
This method can be used accompanying with Translation-
based Model, Linear Transformation Model and Parameter
Sharing Model. Formally, we build a set M, and iteratively
add newly aligned entity pairs into this set. For each aligned
entity pair (e1, e2), we define a mapping R : (E1, E2) →
[0, 1] to calculate the reliability score:

R(e1, e2) = σ
(
k(θ − E(e1, e2))

)
, (13)

where σ(·) is the sigmoid function, k is a hyper-parameter
satisfying k ∈ R+. It can be observed that, the reliability
score corresponds to the semantic distance E(e1, e2).

Based on reliability scores of newly aligned entities, we
formalize the score function of Soft Alignment as:

IS =
∑

(e1,e2)∈M

R(e1, e2)(H(e1,e2) +H(e2,e1)),

H(e1,e2) =
∑

(e1,r,t)

U(e2, r, t) +
∑

(h,r,e1)

U(h, r, e2),
(14)

where U(h, r, t) indicates the loss on this triple. For
TransE and PTransE, we have different U : In TransE,
U(h, r, t) = L(h, r, t); in PTransE, U(h, r, t) = L(h, r, t) +
1
Z

∑
p∈P (h,t)R(p|h, t)L(p, r).

4.5 Optimization and Implementation Details
We use stochastic gradient descent (SGD) as our optimizer. In
Linear Transformation Model, we initialize matrix following
[Chen et al., 2016]. The knowledge embeddings E = {e|e ∈
E} and R = {r|r ∈ R} are initialized by drawing from
a normal distribution. In Soft Alignment, to achieve better
quality, we limit the number of newly aligned entities in each
alignment procedure to a threshold. We denote the epochs
where we conduct alignment as B = {bi}NB

i=0, and in the bi-
th epoch, we set the maximum number of alignments to ci,
and C = {ci}NC

i=0. Not that NB = NC .

5 Experiment
In experiments, we mainly concentrate on entity alignment.
Moreover, the learned knowledge representations could also
help in mono-KG knowledge graph completion including en-
tity prediction and relation prediction.



5.1 Datasets
In this paper, we build four datasets based on FB15K [Bordes
et al., 2013] originally extracted from Freebase [Bordes et
al., 2013], which contains 14, 951 entities, 1, 345 relations
and 592, 213 triples in total. The first three datasets, DFB-1,
DFB-2, DFB-3, are for entity alignment, and the last DFB-4
is for knowledge graph completion.

DFB-1, DFB-2 and DFB-3. We build the three datasets
in similar ways by randomly dividing FB15K triples into two
subsets T1 and T2 of similar size, and making the overlap ratio
O of the amount of shared triples between T1 and T2 to all
triples satisfying pre-defined values. Entity setE and relation
set R in these two KGs are the same. We know all relation
alignments and alignment seeds L selected from those most
frequent entities. The alignments of other entities are used as
the test set and validation set. The three datasets are built with
different |L| and overlap O between the two KGs, as shown
in Table 1.

Table 1: Statistics of DFB-1, DFB-2 and DFB-31.

Dataset |R| |E| |T1| |T2| |L| #Valid O
DFB-1 1,345 14,951 444,159 444,160 5,000 1,000 0.5
DFB-2 1,345 14,951 444,159 444,160 500 1,000 0.5
DFB-3 1,345 14,951 325,717 325,717 500 1,000 0.1

DFB-4. We extract three triple sets from FB15k. The first
two are for training and testing, and the third one is an aux-
iliary training set. We first extract a test set and divide the
remaining triples into two subsets, a training set and an aux-
iliary training set, treated as triples of two KGs T1 and T2.
Entity set E, relation set R and alignment seeds L are iden-
tical to DFB-1. The size of training set, test set and auxiliary
training set are 399, 856/59, 071/399, 857 respectively.

5.2 Experiment Settings
For knowledge embeddings, the dissimilarity measure in
TransE is implemented through L1-norm. Both TransE and
PTransE are learned with the best parameters reported in
their papers, and PTransE is “ADD, 2-STEP” version. For
joint embeddings, the hyper-parameters in Translation-based
Model and Linear Transformation Model are set to the best
ones in [Chen et al., 2016], except for embedding dimension
n and learning rate λ which are set differently.

Our methods are trained with stochastic gradient de-
scent (SGD). As for hyper-parameters, we select margin
γ among {0.5, 1.0, 1.5, 2.0}. We set the dimensions of
entity and relation embeddings to be the same n. We
set a fixed learning rate λ = 0.001 following [Bordes
et al., 2013; Lin et al., 2015]. For Hard Alignment and
Soft Alignment, we select θ among {0.5, 1.0, 2.0, 3.0,
4.0}. For Soft Alignment, we select k among {0.5, 1.0,
2}. For a fair comparison, all models are trained under
the same dimension n = 50 and the same amount of
epochs 3000. The optimal configurations of our models are:
γ = 1.0, k = 1.0, B = {1000, 1500, 2000, 2500}, C =

1Note that knowledge graphs in DFB-3 are more heterogenous
than KGs in real world. Here DFB-3 is used only for testing the
robustness of our models.

{5000, 6000, 7000, 8000}, θ = 1.0 for Hard Alignment and
θ = 3.0 for Soft Alignment. Note that, the threshold θ is dif-
ferent for SA and HA because HA is more sensitive to align-
ment errors. These hyper-parameters are tuned for the first
experiment, but the same configurations are also used in the
second experiment.

In the following subsections, we name all our methods as
“ITransE/IPTransE (HA/SA)” to denote different implemen-
tations including through TransE/PTransE and HA/SA. All
our methods are implemented through PS Model because as
will be shown later, PS Model outperforms LT and TB Mod-
els a lot.

5.3 Entities Alignment
Two measures are considered as evaluation metrics: (1) mean
rank of correct entities or relations (Mean Rank); (2) propor-
tion of correct answers ranked in top-10 and top-1 (Hits@10
and Hits@1). Thereof, we prefer higher Hits@10 and Hits@1
and lower Mean Rank that indicate better alignment.

For comparison, we select two models as our baselines:
Translation-based Model and Linear Transformation Model
based on TransE, which are adapted from “Var3” and “Var4”
of MTransE in [Chen et al., 2016], named “MTransE (TB)”
and “MTransE (LT)”. We also select TransE/PTransE with
Parameter Sharing Model (“TransE/PTransE + PS”) for com-
parison. Conventional graph-based models are not selected
as baselines for their high computing complexity.
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Figure 3: Hits@1 and Mean Rank of our methods through different
iterations. (Hits@10 has similar trends to Hits@1.) Note that we
conduct soft alignment every 500 iterations from the 1000-th itera-
tion.

We show the evaluation results in Table 2. From the ta-
ble, we can observe that: (1) Among various methods of joint
embeddings, the Parameter Sharing Model outperforms both
Linear Transformation Model and Translation-based Model.
This verifies the fact that entities and their counterparts share
the same intrinsical knowledge. (2) Among various methods
of Iterative Alignment, Soft Alignment Model consistently
outperforms Hard Alignment Model and other baselines. The
reason is that Hard Alignment suffers from error propagation
that we have analyzed before. (3) PTransE-based methods
outperform the corresponding TransE-based methods. This
indicates that better knowledge embeddings lead to more ac-
curate alignment.

We further show the effectiveness of soft alignment strat-
egy in each iteration in Fig. 3. From Fig. 3 we can observe
that: (1) the performances of all methods increase with itera-
tions with their increasing rates slowing down gradually. Af-
ter the 3000-th iteration, the increasing rate is quite low, so we



Table 2: Results of entity alignment

Metric DFB-1 DFB-2 DFB-3
Hits@1 Hits@10 Mean Rank Hits@1 Hits@10 Mean Rank Hits@1 Hits@10 Mean Rank

MTransE (LT) 38.9 61.0 237.7 12.3 33.8 419.2 6.5 22.0 699.8
MTransE (TB) 13.6 35.1 547.7 13.9 35.4 675.7 4.5 16.1 1255.5
TransE + PS 61.9 79.2 105.2 41.1 67.0 154.9 12.2 34.6 431.9

ITransE (HA) 62.6 78.9 100.0 41.2 66.9 151.9 12.3 33.7 432.3
ITransE (SA) 67.1 83.1 80.1 57.7 77.7 109.3 16.2 40.9 367.2
PTransE + PS 65.8 83.4 62.9 46.3 72.1 96.8 15.8 40.2 346.9

IPTransE (HA) 66.1 83.3 59.1 46.2 72.6 94.2 15.1 39.7 337.6
IPTransE (SA) 71.7 86.5 49.0 63.5 82.2 67.5 20.4 47.4 281.0

Table 3: Results of knowledge graph completion (DFB-4)

Metric
Entity Prediction Relation Prediction

Mean Rank Hits@10 Mean Rank Hits@1
Raw Filter Raw Filter Raw Filter Raw Filter

MTransE (LT) 240.8 131.3 36.4 47.3 37.2 36.9 48.3 56.9
MTransE (TB) 851.3 759.7 9.4 10.8 293.7 293.4 27.4 27.7

TransE 246.1 131.6 42.5 54.3 55.9 55.6 44.2 50.7
TransE + Aux 232.8 121.5 43.3 54.9 50.1 49.8 44.4 50.9
ITransE (SA) 209.2 101.0 44.2 55.1 19.8 19.6 54.2 60.7

PTransE 213.0 97.2 50.9 72.1 2.33 1.96 67.4 86.9
PTransE + Aux 206.3 80.4 52.7 80.7 2.34 1.93 68.8 90.5
IPTransE (SA) 197.5 70.6 53.0 80.8 2.03 1.62 68.6 90.8

provide the result of the 3000-th iteration to balance the effec-
tiveness and efficiency. And since the 1000-th iteration, SA
methods achieve much better performances than their coun-
terpart. (ITransE (SA) is even better than PTransE + PS at
the 3000-th iteration.) (2) SA methods have a huge enhance-
ment at the 1500-th iteration, which is probably due to the
alignments we conducted at the 1000-th iteration. It can help
entity pairs far from alignment seeds align properly, and thus
enhances the overall performance. (3) For Mean Rank metric,
non-iterative methods begin to increase at 1000-th to 1500-
th iteration (indicating performance getting worse), while the
trends of SA methods are descending. Since Mean Rank eval-
uates the overall performance of a model, the results confirm
the robustness of our models.

5.4 Knowledge Graph Completion
The above experiments have shown the capability of our
methods for entity alignment task. We also want to show that
entity alignment can also help learn better knowledge em-
beddings, which can be evaluated by knowledge graph com-
pletion [Bordes et al., 2011; 2012; 2013]. Knowledge graph
completion aims to complete a triple (h, r, t) when one of
h, r, t is missing. Two measures are considered as our eval-
uation metrics: (1) mean rank of correct entities or relations
(Mean Rank); (2) proportion of correct answers ranked in top-
10 (Hits@10, for entities) or top-1 (Hits@1, for relations).
We also follow the two evaluation settings named “raw” and
“filter”. We conduct experiments on DFB-4 and divide the
task into two subtasks: entity and relation prediction.

For comparison, we select several models as our baselines:
(1) TransE/PTransE which can only utilize information from
the training set of DFB-4, (2) “TransE/PTransE + Aux” which
can utilize all triples from the training set and triples from
the auxiliary set whose head and tail both are in alignment
seeds, (3) “MTransE (LT)” and “MTransE (TB)”, as we intro-
duced in the previous experiment. Since SA Models perform

better than HA Models and “TransE/PTransE + PS”, here we
only select “ITransE/IPTransE (SA)” for comparison due to
limited space.

The results of entity prediction and relation prediction are
shown in Table 3. From the table we can observe that: (1)
Parameter Sharing Model with Soft Alignment outperforms
all baselines in almost all metrics only expect for comparable
performance on “Raw” version of Hits@1. This result indi-
cates that our methods can successfully utilize the informa-
tion from auxiliary KG to improve knowledge embeddings.
(2) Parameter Sharing Model also achieves much better Mean
Rank as compared to the methods directly incorporating aux-
iliary KG (TransE/PTransE+Aux). This indicates that by it-
eratively adding newly aligned entity pairs, we can achieve
more informative knowledge embeddings.

6 Conclusion and Future Work
This paper presents iterative entity alignment via joint knowl-
edge embeddings, by encoding both entities and relations
of various KGs into a unified semantic space. We propose
a simple and effective Parameter Sharing Model and Iter-
ative Alignment Model to learn joint embeddings and per-
form entity alignment simultaneously. We evaluate on entity
alignment and knowledge graph completion, and experiment
results show the effectiveness of our methods as compared
with other baselines. The source code can be obtained from
https://github.com/thunlp/IEAKE.

In future, we will explore the following research directions:
(1) This paper only considers the internal structural informa-
tion of KGs for entity alignment. In future, we will incor-
porate rich external information of KGs for entity alignment,
and evaluate our models on real-world KG alignment. (2)
There are many other effective KRL models, which can be
easily adopted in our methods. In future work, we will ex-
plore the effectiveness of these KRL models in our methods
for entity alignment.
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