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ABSTRACT
Semantically connecting users and items is a fundamental prob-
lem for the matching stage of an industrial recommender system.
Recent advances in this topic are based on multi-channel retrieval
to efficiently measure users’ interest on items from the massive
candidate pool. However, existing studies are primarily built upon
pre-defined retrieval channels, including User-CF (U2U), Item-CF
(I2I), and Embedding-based Retrieval (U2I), thus access to the lim-
ited correlation between users and items which solely entail from
partial information of latent interactions. In this paper, we propose
a model-agnostic integrated cross-channel (MIC) approach for the
large-scale recommendation, which maximally leverages the inher-
ent multi-channel mutual information to enhance the matching
performance. Specifically, MIC robustly models correlation within
user-item, user-user, and item-item from latent interactions in a
universal schema. For each channel, MIC naturally aligns pairs with
semantic similarity and distinguishes them otherwise with more
uniform anisotropic representation space. While state-of-the-art
methods require specific architectural design, MIC intuitively con-
siders them as a whole by enabling the complete information flow
among users and items. Thus MIC can be easily plugged into other
retrieval recommender systems. Extensive experiments show that
our MIC helps several state-of-the-art models boost their perfor-
mance on four real-world benchmarks. The satisfactory deployment
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Figure 1: A diagram of a typical two-stage (matching and
ranking) recommender system in the real world. MIC can
be easily applied in the matching stage.

of the proposedMIC on industrial online services empirically proves
its scalability and flexibility.
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Figure 2: A diagram for multiple connected paths (U2I, I2I,
U2U, U2U2I, U2I2I) among users and items. The interactions
and correlations are reflected in the left matrix.

1 INTRODUCTION
In this era of information explosion, recommendation services have
emerged to match various products with diverse users efficiently.
As shown in Figure 1, the matching stage providing the retrieved
items list to the ranking stage is the cornerstone and the bottleneck
of a typical two-stage industrial recommender system. Figure 2
depicts the commonly used retrieval connected paths: 1) U2I: Di-
rectly recommend items to users. 2) I2I: Recommend similar items.
3) U2U: Retrieve similar users. 4) U2U2I: Recommend items that
similar users like based on user-based collaborative filtering. 5)
U2I2I: Recommend similar items based on user interaction history
and similar items. These paths finally depict the commonly retrieval
channels:U2U (by U2U2I path),U2I (by U2I path) and I2I (by U2I2I
path). In this scenario, it is vital to efficiently model user preferences
over items to retrieve from large-scale candidate pools; thus, multi-
channel retrieval, which efficiently mixes the diversified retrieved
items, is a natural and indispensable approach.

However, most previous methods seek to improve the perfor-
mance of user modeling based on a single channel, thus failing
to leverage inherent correlations in the user-based channel, item-
based channel, and user-item channel simultaneously. For user
channel (U2U), it is common in the industry recommendation sys-
tems to use Locality sensitive hashing [13], Paragraph2Vector, [25]
and DSSM [20] models to encode user history items and generate
similar users. [28] improve the performance of personalization and
diversity in item-based collaborative filtering from the item channel
(I2I) perspective. [3, 7, 21, 27, 29] are proposed to model dynamic
and diversified user preferences based on interaction records from
the user-item channel (U2I). For retrieval frommultiple sources, [36]
propose a hierarchical reinforcement learning framework to rec-
ommend heterogeneous items. Nevertheless, the existing method
focuses on improving performance based on partial information
from each channel, significantly reducing their performance.

We argue that addressing the aforementioned issues in a unified
manner is under-explored and points to a new promising direction
for developing recommender systems. Models that solely focus
on a single angle could learn common relevance between users
and items while ignoring the inherent cross-channel information
and performing poorly in a real-world scenario. Industrial systems
attempt to mitigate such performance reduction by retrieving items

based on multiple channels, including various features, strategies,
and models. However, existing offline training pipelines are bound
to a channel-specific model framework, and the online mixture of
multiple channel retrieval is usually controlled by a simple quota
mechanism, which leads to two major challenges: a) Devising a
mechanism to utilize cross-channel information. b) Improving item
retrieval accuracy and diversity simultaneously in a unified manner.
In contrast, our proposed model-agnostic integrated cross-channel
(MIC) approach is towards addressing the challenges mentioned
above within a universal retrieval recommender system.

In this work, we focus on capturing correlations among users
and items across multiple channels with a single model in a unified
schema. To achieve this, we first found that it is possible to use
one model such as Comirec [3] for three-channel retrieval: U2I,
U2U, I2I. Then we designed cross-channel contrastive learning
techniques to boost a single model’s performance on three channels.
We introduce cross-channel contrastive learning techniques into
our unified framework with learnable and configurable settings to
handle the dynamic and uncertain nature when connecting users
and items. In particular, we randomly perturb the fields of each
instance and perform dropout in the embedded feature space. The
objective is to learn the representations by leveraging a contrastive
learning loss to maximize the similarity between the embeddings of
two versions of the same instance. User and item representations are
learned in their own semantic space via intra-channel contrastive
loss with the user-user (U-U) contrastive and the item-item (I-I)
contrastive training setting. To further connect users and items, we
intuitively perform a non-linear projection to learn additional users
and items representations in a common semantic space via inter-
channel user-item (U-I) contrastive loss. The relevance between
users and items is measured as the cosine similarity between their
vectors in a shared space. Finally, We built a unified score function
to generate top-𝑁 items from U2U, I2I, and U2I retrieved items.

MIC can realize efficient multi-channel retrieval to capture the
co-evolving diversified and dynamic users and item representations
in an integrated schema. Since the cross-channel learning module is
independent of the encoders and the embedding layer is adaptable
to sparse and dense features of users and items, MIC achieves a
model-agnostic performance boost by simply switching the encoder
to other retrieval models as shown in Figure 3. To summarize, the
main contributions of this work are as follows:

• We formulate the matching stage of recommendation as con-
necting user and item from multiple channels and propose a
model-agnostic MIC architecture based on integrated cross-
channel user and item representation learning techniques.

• We address the aforementioned long-standing challenges in
recommendation in a unified manner via a cross-channel
contrastive aggregation mechanism. MIC mitigates the un-
certainty of co-evolving user-item correlations and alleviates
the seesaw effect between retrieval accuracy and diversity.
To the best of our knowledge, this is the first work that
proves it is possible to simultaneously utilize U2I, U2U, and
U2I channels to improve retrieval accuracy and diversity.

• Compared with the existing method, MIC shows superior ef-
fectiveness and efficiency performance on four public datasets.
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MIC can also be incorporated into other matching stage rec-
ommenders to boost their performance.

• We deployed MIC on the Tencent News platform, and the
satisfactory online 𝐴/𝐵 test results on million-scale users
and items confirm the efficiency and effectiveness of MIC
practically.

2 APPROACH
2.1 Problem Formulation
In a typical recommendation scenario, we have a set of users
and a set of items which can be denoted as 𝑈 = {𝑢1, 𝑢2, ..., 𝑢 |𝑈 |}
and 𝑉 = {𝑣1, 𝑣2, ..., 𝑣 |𝑉 |}, respectively. Let 𝑋𝑢 = {𝑥𝑢1 , 𝑥

𝑢
2 , ..., 𝑥

𝑢
|𝑋𝑢 |}

denote the sequence of interacted items from user 𝑢 ∈ 𝑈 sorted
in a chronological order: 𝑥𝑢𝑡 denotes the item that the user 𝑢 has
interacted with item at time step 𝑡 . Given the user historical behav-
iors, the goal of the sequential recommendation task considered
in this paper is to retrieve a subset of items from the pool 𝑉 for
each user in 𝑈 such that the user is most likely to interact with
the recommended items. Specifically, each instance is represented
by a tuple (𝑋𝑢 , 𝐹𝑢 , 𝐹𝑣), where 𝑋𝑢 denotes the interactions records
of user 𝑢, 𝐹𝑢 denotes the fields of features of the user 𝑢 including
user ID, gender and age. 𝐹𝑣 denotes the fields of features of target
item 𝑣 including the information of item ID, item keywords. MIC
learns a function 𝑓 and 𝑔 for the representations of users and items
respectively as

−→𝑒𝑢 = 𝑓 (𝑋𝑢 , 𝐹𝑢 ),−→𝑒𝑣 = 𝑔(𝐹𝑣) (1)
where −→𝑒𝑢 ∈ R𝑑×1 denotes the representation vector of user 𝑢, and
𝑑 is the dimension. −→𝑒𝑣 ∈ R𝑑×1 denotes the representation vector of
item 𝑣 . When user representation vector and item representation
vector are learned, top-N items are recommended according to the
likelihood function 𝑝 as:

𝑝 (𝑖 |𝑈 ,𝑉 ,𝑋 ) = _𝑢2𝑣 ∗𝑝 (−→𝑒𝑢 ,−→𝑒𝑣 ) + _𝑢2𝑢 ∗𝑝 (−→𝑒𝑢 ,𝑈 , 𝑋 ) + _𝑣2𝑣 ∗𝑝 (−→𝑒𝑣 , 𝑋 )
(2)

where 𝑁 is the predefined number of items to be retrieved. −→𝑒𝑣 is
the embedding of item v from a set of items 𝑉 . _𝑢2𝑣 , _𝑢2𝑢 and _𝑣2𝑣
represent the balance factor for each inference channel U2I, U2U
and I2I respectively. We use Grid Search to choose _𝑢2𝑣 , _𝑢2𝑢 and
_𝑣2𝑣 as 1:1:1. As we mainly focus on improving the performance
in the matching stage of classical industrial recommender systems,
Our framework outputs the probabilities for all the items, repre-
senting how likely the specific user will engage with these items,
and retrieves top-N candidate items.

2.2 Datastore and Inference Procedure
When the MIC is trained, we can predict all users’ and items’ repre-
sentation in the training dataset and build a user Datastore and an
item Datastore. In the user Datastore, we define the key-value pair
(−→𝑒𝑢 , 𝑢) where the key −→𝑒𝑢 is the vector representation of the value
user 𝑢. In the item Datastore, the key-value pair is (−→𝑒𝑣 , 𝑣) from the
item 𝑣 representation −→𝑒𝑣 . We also build an interaction Datastore
with key-value pairs (𝑢,𝑋𝑢 ) where the key is the user ID, and the
value is the user interaction history.

At test time, given the user 𝑢 with interaction history and fea-
tures, we get user representations −→𝑒𝑢 from 𝑓 (𝑋𝑢 , 𝐹𝑢 ). MIC uses 𝑒𝑢

to retrieve 𝑁 items from item Datastore (U2I) and𝑚 similar users
from user Datastore. For each similar user, we obtain their interac-
tion history from the interaction Datastore (U2U). We also search
similar items according to the user’s history from item Datastore
(I2I). After U2I, U2U, and I2I channels’ search, we have a set of
candidate items with counting scores 𝑉𝐶 = {(𝑣𝑖 , 𝑠𝑖 )}, where 𝑠𝑖 is
the repeated number of the retrieved item 𝑖 . If a specific item is
retrieved from more similar users or more similar user interactions,
then the counting score will be larger. The counting scores directly
considers the contribution of U2U and I2I channel. The size of 𝑉𝐶
is often larger than N and much smaller than |𝑉 |. MIC calculates
each item’s probability with user embedding, item embedding, and
item counting numbers.

𝑆𝑐𝑜𝑟𝑒𝐵𝑎𝑠𝑖𝑐 (𝑣𝑖 ) = 𝑝 (−−−→𝑒𝑣𝑖 , 𝑢), 𝑆𝑐𝑜𝑟𝑒𝑀𝐼𝐶 (𝑣𝑖 ) =
𝑒𝑥𝑝 (𝑠𝑖 )∑

𝑗 ∈ |𝑉𝐶 | 𝑒𝑥𝑝 (𝑠 𝑗 )
(3)

𝑔(𝑖, 𝑗) = 𝛿 (𝐶 (𝑖)! = 𝐶 ( 𝑗)), 𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑣 (𝑣𝑖 ) =
∑
𝑖∈𝑉𝐶

∑
𝑗 ∈𝑉𝐶

𝑔(𝑖, 𝑗) (4)

𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒𝐵𝑎𝑠𝑖𝑐 + _𝑚𝑖𝑐𝑆𝑐𝑜𝑟𝑒𝑀𝐼𝐶 (𝑣𝑖 ) + _𝑑𝑖𝑣𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑣 (𝑣𝑖 ) (5)

where _𝑚𝑖𝑐 represents the adjustable factor to aggregate items
from different channels and _𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑑𝑖𝑣) to control retrieved
items’ diversity. Similar to ComiRec [3], we control retrieved items’
diversity according to item category. We use Grid Search to choose
_𝑚𝑖𝑐 as 0.5 and _𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 as 0.2. 𝐶 denotes the category of the spe-
cific item. After MIC scored each item to the current user according
to U2I, U2U, and I2I channels results, we choose top N items from
𝑉𝐶 .

2.3 Overall Architecture
Figure 3 gives an overview of our proposed MIC model in each
component. MIC is composed of 1) Perturbation Mining module:
Perturbing data samples via Dropout Layer and Field Mask Embed-
ding Layer, and retrieving similar samples via Nearest Neighbor
Mining to construct contrastive positive pairs. 2) Encoder Mod-
ule: Encoding the user and item features into inherent representa-
tions; Replaceable with existing encoders from retrieval baselines.
3) Cross-channel Contrastive module: Maximally leveraging the
inherent mutual information in multiple channels via contrastive
loss from user-user, item-item, and user-item space. In each chan-
nel module, the objective is to pull similar samples and push away
dissimilar ones.

2.4 Perturbating and Mining
Contrastive learning method encourages positive pairs to have
similar representations while negative pairs to have dissimilar rep-
resentations. In the scenario of our unified framework, we consider
both users and items as the anchor and generate pseudo views of
each instance for comparison. We also leverage retrieved nearest
neighbors to support the augmented sample views further.

2.4.1 Multi-level Perturbation. Data augmentation has been proved
effective and widely used in contrastive prediction tasks without
changing the architecture [4]. We devise a simple augmentation
method to decouple from the neural network architecture. For users,
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Figure 3: Overview of model-agnostic integrated cross-channel recommenders (MIC). The perturbations is performed in both
field level and embeded features level. The user-item (U2I), user-user (U2U) and item-item (I2I) modules are aggregated to
calculate cross-channel contrastive loss. In Inference stage, MIC applies aggregation over items retrieved from three channels
and compute Score𝐵𝑎𝑠𝑖𝑐 , Score𝑀𝐼𝐶 and Score𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 for final recommendation reference.

we randomly masked the user fields, including attributes (Id, gender,
age) and interaction sequence (item Id). Similarly, we randomly
masked attributes (item Id, keywords) and each item’s interaction
records (user Id). In addition to the field-level perturbations, the
dropout is performed in the embedded features space. When only
perturbation-based view augmentation is available, we treat the
other 2(𝑁 − 1) augmented examples within a minibatch as negative
examples.

2.4.2 Nearest Neighbor Mining. We observe limited views gener-
ated by augmentation. First, view augmentation is limited to origin
instance and fail to provide diversified samples. Second, effective
augmentation is difficult to devise, refine, and evaluate in some
scenarios. Finally, the augmentation method suffers from the bal-
ance between providing diversified views andmaintaining semantic
consistency.

In addition to augmentation, we argue that it’s necessary to
leverage information from a retrieval angle of view. For users, we
retrieve the anchor user’s k-nearest neighbor (kNN) in the rep-
resentation space as the extension of user positive pairs. Besides,
we adopt k-means++ to cluster the users and choose users from
different clusters as hard negative samples. For items, both positive
and hard negative samples are mined in the representation space
in the same manner as users. At the interaction level, we use users
to retrieve items and items to retrieve users. Before that, we project
user and item representation in the same space. The same retrieval
is then applied in this joint user-item representation space. Note
that our sample selection pool is highly flexible. All the parameters,
including the number of nearest-neighbor, number of clusters, and
number of masked attributes, are tuned during training and adapt-
able to manual modification. Thus MIC maintains scalability and
robust temporal efficacy in fast-speed transforming online changes.

2.5 Cross-channel Contrastive Estimation
Many works [18] directly optimize by forcing 𝑐𝑙𝑖𝑐𝑘 (𝑢, 𝑣) = 1 in
diagonal and 𝑐𝑙𝑖𝑐𝑘 (𝑢, 𝑣) = 0 in other positions. However, these forc-
ing methods assume the deterministic correlation between user and
items, which is always not true in the real world. The real-world
environment is always stochastic (e.g. diversified and dynamic user
behaviors), where deterministic functions can only predict the aver-
age. On the other hand, contrastive estimation is an energy-based
model. Instead of setting the cost function to be zero only when
the prediction and the observation are the same, the energy-based
model assigns low cost to all compatible prediction-observation
pairs. Thus, the contrastive estimation can handle the stochasticity
by its nature [26]. Inspired by recent contrastive learning algo-
rithms [4], we propose to train these models by maximizing agree-
ment between the anchor and augmented views via a contrastive
loss. We randomly sample a minibatch of 𝑁 user-item pairs (𝑢, 𝑖).
For the unified model, augmented users and items and the mined
samples in the support set are defined as positive examples. Fol-
lowing SimCLR [4], we treat the other 2(𝑁 − 1) real representation
within a minibatch as negative examples. We use cosine similarity
to denote the distance between two representation (𝑢, 𝑣), that is
sim(𝑢, 𝑣) = u𝑇 · v/| |u| | · | |v| |. The loss function for a positive pair
of examples (𝑢, 𝑣) is defined as:

L𝑢𝑣 = −log exp(sim(𝑢, 𝑣𝑖 )/𝜏)∑𝑁
𝑗=1
𝑗≠𝑖

exp(sim(𝑢, 𝑣 𝑗 )/𝜏)
− log

exp(sim(𝑣,𝑢𝑖 )/𝜏)∑𝑁
𝑗=1
𝑗≠𝑖

exp(sim(𝑣,𝑢 𝑗 )/𝜏)

(6)
where 𝜏 denotes a temperature parameter that is empirically chosen
as 0.1.

Similarly, for user-user and item-item model, the loss function
for a positive pair of examples (�̃�, 𝑢) and (𝑣, 𝑣) is defined as:
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L𝑢𝑢 = −log exp(sim(𝑢𝑘 , 𝑢𝑘 )/𝜏)∑𝑁
𝑗=1
𝑗≠𝑘

exp(sim(𝑢𝑘 , 𝑢 𝑗 )/𝜏)
(7)

L𝑣𝑣 = −log exp(sim(𝑣, 𝑣𝑖 )/𝜏)∑𝑁
𝑗=1
𝑗≠𝑖

exp(sim(𝑣, 𝑣 𝑗 )/𝜏)
(8)

The basic logistic loss by comparing the cosine similarity of users
and items to predict 𝑦𝑖 are computed as below:

L𝑏𝑎𝑠𝑖𝑐 = − 1
𝑁

∑
𝑖

[𝑦𝑖 log𝑦𝑖 + (1 − 𝑦𝑖 log(1 − 𝑦𝑖 ))] (9)

2.6 Integrated Model
The user-item (U2I), user-user (U2U) and item-item (I2I) modules
are aggregated to calculate cross-channel contrastive loss. We use
the Adam optimizer to train our method. The objective function
for training our model is to minimize the following cross-channel
contrastive loss:

L = _L𝑏𝑎𝑠𝑖𝑐 + (1 − _) (L𝑢𝑣 + L𝑣𝑣 + L𝑢𝑢 ) (10)
where _ is set to 0.7, each channel weight is 1 : 1 : 1 after parameter
optimization in our experiments. MIC can achieve the optimum
trade-off across multiple channels by selecting the value of hyper-
parameter _ and channel weight. During training, the total loss is
computed across all positive pairs in a mini-batch.

2.7 Model-agnostic Plugin
MIC can also be treated as a plug-in to other matching stage rec-
ommenders by simply switching the encoder. MIC incorporate
the perturbation and mining module in the item-side and add a
cross-channel contrastive learning module on top of the retrieval
baselines. Since the cross-channel learning module is independent
of the encoders and the embedding layer is adaptable to sparse
and dense features of users and items, MIC is highly flexible and
achieves a model-agnostic performance boost in retrieving items
from multiple channels efficiently.

2.8 Cross-channel Inference
During the inference phase of MIC, we get user and item represen-
tation from the user and item side encoder, respectively. For the
U2I channel, we directly use the user vector to retrieve 𝐾1 nearest
neighbor from the whole item pool. For the U2U channel, we search
𝑀1 similar users from the training dataset and retrieve 𝐾2 items
from𝑀1 similar users’ history by considering the weight of similar
users and user-item vector cosine similarity. For the I2I channel, we
use the user’s history to find 𝑀2 relevant items within the whole
item vector space for each history item and retrieve 𝐾3 items by
considering the weight of similar items and user-item vector cosine
similarity. Finally, according to the final score in Equation 5, we
rank top 𝑁 items from multiple channels (𝐾1 + 𝐾2 + 𝐾3).

2.9 Online Deployment
We have deployed MIC on a well-known platform named Tencent
News. Tencent News is one of the most popular news recommen-
dation software, which has more than 300 million active users per

month. The online architecture of Tencent News mainly consists
of the retrieval stage and ranking stage widely used in the industry.
The retrieval stage aims to quickly search hundreds of candidates
from the entire news corpus (containing million-level news) effi-
ciently, while the ranking stage aims to score news items accurately.
MIC is deployed on the retrieval stage and an embedding-based
recall model. We train and update our MIC model hourly.

Once MIC is trained, we infer all item vectors in the corpus and
users’ vectors of the current hour. Item vectors and user vectors are
used to search similar items and users offline. Similarities of each
item and user, user’s interaction history are stored in Redis 1. Item
vectors are also used to build the item Faiss 2 search index. MIC
is also served online for real-time user representation generating.
When a user request comes, MIC first builds Redis key with userID
and last 𝑀 interaction items (we keep 𝑀3 similar items for each
item), then get𝑀1 similar users (we keep last𝑀2 clicked items for
each user). For each similar user, MIC gets their clicked items from
Redis. So we get 𝐾2 = 𝑀1 ×𝑀2 items from similar users (U2U) and
𝐾3 = 𝑀 ×𝑀3 items from similar items (I2I). We package real-time
user features and generate user representation from MIC online
serving then the representation is used to search top 𝐾1 items from
item Faiss index. Finally, the 𝐾1 + 𝐾2 + 𝐾3 items are aggregated
according to final score in Equation 5 and top 𝑁 items are recalled.
The fast nearest neighbor retrieval of Faiss search time is T1 (less
than tenmilliseconds). The time cost of similar users and items from
Redis is T2 ( less than ten milliseconds). The aggregation step time
T3 (less than ten milliseconds). The whole time cost is acceptable
for online serving in our system.

While our MIC model is updated hourly, we are still able to
capture the real-time user preferences. We build real-time MIC
request features including real-time click history for each user
representation. User and corresponding similar users’ interactions
stored in Redis are also updated (in seconds) in real-time. So we can
use real-time clicked items to get similar items from I2I channel
and similar users’ real-time interactions from U2U channel. Since
the time cost is also related to similar users and similar items, the
hyper-parameters should be adjusted to satisfy the online serving
time requirements. In our system, 𝑀1 = 40, 𝑀2 = 60, 𝑀3 = 50,
𝑀 = 30 and 𝑁 = 200.

3 EXPERIMENTS
In this section, we first cover the experimental settings of the
dataset, evaluation metrics, parameter settings, and competitors.
Then we report the results of extensive offline and online exper-
iments with in-depth analysis to verify the effectiveness of MIC.
We conduct experiments to investigate the following research ques-
tions:

• Research Question 1 (RQ1): How does MIC perform on large
public recommendation datasets (Book, Taobao, Movielens,
Steam)?

• Research Question 2 (RQ2): How does MIC perform in real-
word News Recommendations System?

• Research Question 3 (RQ3): Are different components and
losses essential in MIC?

1https://redis.io/
2https://github.com/facebookresearch/faiss
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Table 1: Performance of four public datasets: Amazon Book, Taobao, Movielens and Steam. Results of three retrieval baselines
and the proposed MIC are reported over three metrics: Recall, NDCG and Hit Rate. Gain represents the performance gain of
𝑋+MIC over vanilla 𝑋 model.

Datasets @N Metrics Baselines 𝑋+MIC

DNN Gru4Rec ComiRec DNN Gain Gru4Rec Gain ComiRec Gain

Amazon
Book

@20
Recall 5.608 5.877 6.634 5.934 5.81% 6.0141 2.33% 7.457 12.41%
NDCG 5.371 5.835 6.023 5.836 8.66% 5.992 2.69% 6.195 2.86%
Hit Rate 12.291 12.545 13.423 12.828 4.37% 12.997 3.60% 15.124 12.67%

@50
Recall 8.885 8.908 10.2574 9.3066 4.75% 9.411 5.65% 11.55 10.90%
NDCG 6.594 6.915 7.217 7.077 7.32% 7.105 2.75% 7.889 9.31%
Hit Rate 18.709 18.949 19.231 19.373 3.55% 19.535 3.09% 22.790 18.51%

Taobao

@20
Recall 3.319 4.132 5.065 3.531 6.39% 4.442 7.50% 5.642 11.39%
NDCG 12.493 15.449 19.324 13.481 7.91% 17.995 16.48% 21.221 9.82%
Hit Rate 28.417 32.033 38.429 29.592 4.13% 36.661 14.45% 41.878 8.97%

@50
Recall 5.075 6.118 7.115 5.278 4.00% 6.377 4.23% 7.861 10.48%
NDCG 14.263 16.084 20.635 15.187 6.48% 18.999 18.12% 22.509 9.08%
Hit Rate 39.31 42.114 48.094 40.324 2.58% 45.551 8.16% 51.607 7.30%

Movielens

@20
Recall 12.251 12.993 13.001 12.508 2.10% 13.012 0.15% 13.322 2.47%
NDCG 36.249 37.033 37.207 36.898 1.79% 37.603 1.54% 38.186 2.63%
Hit Rate 71.688 72.344 73.772 73.841 3.00% 74.308 2.71% 76.551 3.77%

@50
Recall 23.028 24.447 25.043 23.875 3.68% 25.003 2.27% 25.927 3.53%
NDCG 38.756 39.888 41.099 40.003 3.22% 41.309 3.56% 42.109 2.46%
Hit Rate 87.245 89.705 90.138 88.907 1.90% 90.111 0.45% 91.391 1.39%

Steam

@20
Recall 2.901 2.672 2.753 3.117 7.45% 2.839 6.25% 3.009 9.30%
NDCG 4.702 4.557 5.284 4.992 6.17% 5.703 25.15% 5.503 4.14%
Hit Rate 10.308 9.928 11.044 10.554 2.39% 10.422 4.98% 11.333 2.62%

@50
Recall 3.671 4.432 5.021 4.288 16.81% 4.775 7.74% 5.123 2.03%
NDCG 5.077 4.997 6.23 5.779 13.83% 5.413 8.32% 6.671 7.08%
Hit Rate 12.031 11.089 13.149 12.608 4.80% 12.307 10.98% 14.388 9.42%

• Research Question 4 (RQ4): How does MIC alleviate the see-
saw phenomenon between retrieval accuracy and diversity:
Can MIC achieve high retrieval accuracy and diversity si-
multaneously?

• Research Question 5 (RQ5): How does contrastive learning
modules (UU,UI,II) help improve the embedding space and
recall performance for corresponding U2U, U2I, I2I channel?

3.1 Dataset and Metric
We used four large benchmark datasets, Amazon Book, Taobao,
Movielens, and Steam. The statistics are shown in 2.

• Amazon Books([17]): This dataset contains product reviews
and metadata from Amazon, including 142.8 million reviews
product metadata and links.

• Steam: This dataset contains more than 40k games from
the steam shop with detailed data, including reviews and
information about which games were bundled together.

• Taobao[43]: This dataset contains user behaviors recorded
by Taobao recommendation system, consisting of users’
clicks, item ID, item category, and timestamp.

• Movielens-1M[15]: One of the currently releasedMovieLens
datasets, which contains 1,000,209 movie ratings from 6,040
users across 3,900 movies.

Table 2: Statistics of the Datasets.

Dataset users items interactions

Amazon Books 459,133 313,966 8,898,041
Steam 2,567,538 15,474 7,793,069
Taobao 976,779 1,708,530 85,384,110
MovieLens-1M 6,040. 3,900 1,000,209

To compare the performance of different models, we use three
metrics Recall@N, NDCG@N(Normalized Discounted Cumula-
tive Gain), and HR@N, where N is set to 20, 50 respectively as
metrics for evaluation. The details of our evaluation metrics are as
below:

• Recall: Number of corrected recommended items divided
by the total number of all recommended items.

𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 =
1
|𝑈 |

∑
𝑢∈𝑈

|𝐼𝑢,𝑁 ∩ 𝐼𝑢 |
|𝐼𝑢 |

(11)

where 𝐼𝑢,𝑁 denotes the set of top-N recommended items for
user u and 𝐼𝑢 is the set of testing items for user u.
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• Normalized Discounted Cumulative Gain(NDCG): NDCG
measures the percentage of correct recommended items, con-
sidering the positions of correct recommended items.

𝐷𝐶𝐺@𝑁 =
1
|𝑈 |

∑
𝑢∈𝑈

∑
𝑟 ∈𝑅

𝛿𝑁 (𝑟 )
𝑙𝑜𝑔2 (𝑖𝑟 + 1) , (12)

𝑁𝐷𝐶𝐺@𝑁 =
𝐷𝐶𝐺@𝑁
𝐼𝐷𝐶𝐺@𝑁

(13)

where 𝑖𝑟 is the index of 𝑟 in 𝑅. 𝛿𝑁 (·) is an indicator function
which returns 1 if item r is in top-N recommendation, oth-
erwise 0. IDCG is the DCG of ideal ground-truth list which
refers to the descending ranking of ground-truth list in terms
of predicted scores.

• Hit Rate(HR): This measures the percentage of at least
one item is correctly recommended to and interacted by
corresponding user.

In all these three metrics, a higher value implies better perfor-
mance. Besides, we adopt a per-user average for each metric. We
track Recall, NDCG, Hit Rate of the Development split during train-
ing. Thenwe keepmodels with the best Recall Rate on Development
split during experiments for a fair comparison.

3.2 Parameter Settings
We implement baselines and our proposed model in the same set-
tings for fairness. The implementation is based on Tensorflow for
offline experiments. The dimension of the collaborative embedding
is set as 128. Batch size is set to 1024 on a single NVIDIA P40 GPU.
The learning rate is set to 0.001, and the dropout rate is set to 0.2.
The temperature parameter is empirically chosen as 0.1. We utilize
Xavier and Adam algorithms in the experiments to initialize and
optimize the parameters of the models.

3.3 Competitors
3.3.1 Retrieval Baselines. YoutubeDNN [7] is one of the predomi-
nant deep learning models based on collaborative filtering systems
incorporating text and image information which have been suc-
cessfully applied under the industrial scenario. Gru4Rec [19] is
a session-based recommender using Recurrent Neural Networks.
ComiRec [3] is a novel controllable multi-interest framework which
can be used in sequential recommendation.

3.3.2 MIC as Plugin. As MIC is can also be treated as a model-
agnostic plugin, we implement a series of variants withMIC adapted
to other retrieval models denoted as 𝑋 +𝑀𝐼𝐶 .

3.3.3 MIC Variants. Our unified model MIC co-learns user and
item representation in both shared and their own semantic space.
The retrieval model considers mutual information across multiple
channels, including use-user, item-item, and user-item channel,
simultaneously in an integrated framework.

In addition, we provide three representative variants as MIC-
UI,MIC-UU, and MIC-II with single-channel contrastive loss. For
MIC-UI, we add user-item contrastive training on top of ComiRec
as a variant of our proposed MIC. This variant can capture the infor-
mation behind the interaction and match the users to appropriate
items from the user-item channel. For MIC-UU, we add user-user

contrastive training on top of ComiRec as a variant of our pro-
posed MIC. This variant is capable of clustering users and matching
similar users to each other from the user channel. For MIC-II, we
add item-item contrastive training on top of ComiRec as a variant
of our proposed MIC. This variant is capable of clustering items
and matching similar items to each other from the item channel.
All compositional ablation results of each contrastive setting are
reported in Table 4.

3.4 Model-agnostic Gain (RQ1)
The model performance for the retrieval stage recommender system
is shown in Table 1. We conduct extensive experiments to dissect
the effectiveness of our proposed model-agnostic integrated cross-
channel (MIC) model. In the baseline performance comparison
experiment, the MIC is implemented in a full mode with weighted
UI, UU, and II contrastive loss. All these models are running on the
four datasets introduced above: Amazon Book, Taobao, Movielens
and Steam. We plug our MIC into prevalent retrieval baselins: :
YouTube DNN, Gru4Rec and ComiRec.. As shown in Table 1, MIC
enhanced models (𝑋+MIC) consistently achieve a significant per-
formance gain on all evaluation metrics than the retrieval baselines
over four datasets. In particular,𝐶𝑜𝑚𝑖𝑅𝑒𝑐 +𝑀𝐼𝐶 gain 10.90%, 9.31%,
18.51% over vanilla ComiRec model in Recall@50, NDCG@50 and
Hit Rate@50 respectively over Amazon Book.

3.5 Online A/B Test(RQ2)
We further conduct an online A/B test to evaluate MIC in real-
world scenarios. We have deployed MIC on Tencent News Video
Recommendation scenarios as stated in Sec 2.9. MIC is deployed as
a matching model in the retrieval stage, with the remained modules
in the whole system unchanged. The online recall baseline is an
ensemble model containing tens of retrieval models (embedding-
based, rule-based, hot-based, etc.). In the online A/B test, we focus
on four metrics, including the Exposure Page Viewed Ratio (EPV),
Average Play Percentage of each viewed video, Average Duration,
and Average Viewed Video of each user in our platform daily. The
A/B test was conducted fromOctober 1st, 2021 to October 15th, 2021,
and the user number in the experiments group and baseline group is
about 1 million. The experimental scenario is Tencent News Video
recommendation. We report the improvements percentages of MIC
in Table 3 fromwhich we can know that: 1) MIC achieves significant
improvements on Average Viewed Video and Average Duration,
which means the recommended videos are more attractive to each
user. At the same time, the Average Play Percentage of each video is
also improved, which means that MIC provides more precise video
to users. 2) The EPV ratio of MIC is about 25%, the most effective
recall model among all models (the second place recall model’s EPV
ratio is about 8%).

3.6 Ablation Study (RQ3)
We conduct ablation experiments of contrastive loss modules and in-
ference channelmodules for our proposedMIC enhanced ComiRec [3].
Results of variants with various cross-channel contrastive loss set-
tings and various inference channels settings over Amazon Book are
reported in Table 4. −UU, −UI, −II represents the Full Model with-
out U-U, U-I, I-I contrastive modules respectively. −Perturbation
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Table 3: Online A/B Test Results. We report the relative performance gain of MIC over Baseline in online A/B experiments.

#Scenario EPV ratio Average Play Percentage ↑ Average Duration ↑ Average Viewed Video ↑
Video Recommendation 25.00% +3.51% +1.26% +1.85%

Table 4: Ablation Performance of MIC Variants over
ComiRec on Amazon Book dataset with Metric@50.

Modules Settings Recall NDCG Hit Rate Diverstiy
Full Model 11.554 7.889 22.790 49.511

Contrastive
Loss

-UU 10.556 7.689 21.132 44.021
-UI 10.347 6.462 21.273 42.483
-II 11.096 7.089 22.668 46.796
-Perturbation 8.415 5.346 16.590 34.188
-Mining 10.176 6.098 20.727 41.983

Inference
Channel

-U2U channel 11.148 7.688 22.076 45.478
-U2I channel 11.484 7.825 22.571 45.603
-I2I channel 11.316 7,758 22.443 41.709

and −Mining represents the Full Model without perturbation and
Nearest Neighbor Mining module. −U2U, −U2I, −I2I represents the
Full Model without consideration of retrieved items from U2U, U2I,
I2I channel respectively during inference. We observe performance
drop over Recall@50, NDCG@50, HitRate@50 and Diversity in
these variants compared with Full Model in Table 1. This implies
the essential role of each module setting in the Full Model.

20 30 40 50 60 70 80
8

9

10

11

12

13
MIC
ComiRec-SA

Figure 4: Retrieval Accuracy and Diversity Balance.We com-
pare ComiRec-SA (Black) and MIC enhanced ComiRec-SA
(Red) over Amazon Book with Recall@50 (x-axis) and Diver-
sity (y-axis).

3.7 Retrieval Accuracy and Diversity (RQ4)
There is a Seesaw Effect between retrieval performance and re-
trieval diversity. We can also observe in Comirec that a better
diversity score degrades Recall. To mitigate this phenomenon, MIC
aggregates retrieved items from three channels (U2U, U2I, I2I). To

Figure 5: Visualization of User and Item Representation in
U2I, U2U and I2I channel over Alignment and Uniformity
Metrics of UI-Align, UU-Uniform and II-Uniform andRecall
Performance.

investigate whether MIC mitigates this, we conduct experiments to
compare MIC and ComiRec on the Amazon Book dataset. Results
are visualized in Figure 4. We can observe that MIC (Red Line)
achieves consistent retrieval performance and diversity gain over
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ComiRec (Black Line). This indicates that MIC successfully lever-
ages the information to simultaneously improve retrieval perfor-
mance and diversity. MIC alleviates the Seesaw Effect and achieves
the balance between retrieval accuracy and diversity.

3.8 Qualitative Results (RQ5)
While we care about the integrated cross-channel performance of
MIC, we still want to see how does contrastive learning modules
(UU,UI,II) help improve the embedding space and recall perfor-
mance for corresponding U2U, U2I, I2I channel. We analyze the
agreement between user representations, item representations, and
final recall performance by the Alignment and Uniformity Met-
rics [34] (lower is better) of UI-Align, UU-Uniform, and II-Uniform.
UI-Align measures the alignment between user and target item
representation, UU-Uniform and II-Uniform measure the uniformly
distributing of user and item representation, respectively. As shown
in Figure 5, bright yellow denotes better Recall performance. Each
point is marked with corresponding contrastive settings: UI-UU-
II means three contrastive learning objects were added, and Base
means none contrastive learning objects were considered. For U2I
Channel (first row in Figure 5), the Recall performance is very sen-
sitive to UI-align, and in no doubt, UI-align gets better when UI
contrastive learning is considered. For U2U Channel (second row),
UU-Uniform starts to play more important roles besides UI-align.
We can find the best recall scores in the bottom left of the "UI-Align,
UU-Uniform" graph in U2U Channel Recall. Besides, U2U-Uniform
would be better if we added contrastive learning between users. For
I2I Channel (third row), II-Uniform senses to be more important
than UI-Align. The "UI-align, II-Uniform" graph shows that the
best Recall appears in the lowest II-Uniform other than the lowest
UI-align. We observe that if we can simultaneously acquire more
aligned user-item representation, and more uniformed user-user,
item-item representations, we can push the integrated model’s U2I,
U2U, and I2I channel performance to the next stage. MIC is one
of this type of model-agnostic integrated cross-channel model for
recommendations.

4 RELATEDWORKS
4.1 Recommendation
Recommendation system can be divided into mainly two categories,
content-based recommendation and collaborative filtering. Collab-
orative filtering techniques is composed of user-based algorithms
[39], item-based algorithms [9] and model-based algorithms [23].
Previous studies [18, 40, 42] achieve significant progress based on
the idea of user modeling and collaborative recommendation.

Besides collaborative filtering, content-based filtering (e.g. DSSM
[21]) is another critical class of recommender systems. Pure content-
based only rely on the feature of users and items, thus ignoring the
common preferences shared among similar users and common prop-
erties among similar items. With the emergence of distributed rep-
resentation learning, user embeddings obtained by neural networks
are widely used. [5] employs RNN-GRU to learn user embeddings
from the temporal ordered review documents. [31] utilizes Stacked
Recurrent Neural Networks to capture the evolution of contexts and
temporal gaps. [12] proposes the framework GraphRec to jointly
capture interactions and opinions in the user-item graph. Due to

the intrinsic drawback of both pure content-based and collabora-
tive recommendations, the hybrid model concept is proposed to
combine them and benefit each other. Commonly used hybrid rec-
ommendation algorithms includeweighted hybrid recommendation
algorithm, cross-harmonic recommendation algorithm, and meta-
model mixed recommendation algorithm [2]. Dai et al.proposed a
dynamic recommendation algorithm [8] that combines the convo-
lutional neural network and multivariate point process by learning
the co-evolutionary model of user-commodity implied features.
Nevertheless, though these hybrid algorithms seek to combine
multi-source data, they failed to consider user-user, item-item, and
user-item coevolution and relatedness in a unified framework.

4.2 Contrastive Learning
Contrastive Learning is a framework to learn representations that
obey similarity constraints in a dataset typically organized by simi-
lar and dissimilar pairs. Hadsell et al. [14] first proposed to learn
representations by contrasting positive pairs against negative pairs.
Some studies [32, 35, 37] utilize a memory bank to store the instance
class representation vector. Other work explored the use of in-batch
samples for negative sampling instead of a memory bank [10, 22, 37]
Recently, SimCLR [4] and MoCo [6, 16] achieved state-of-the-art
results in self-supervised visual representation learning, closing the
gap with supervised representation learning. Contrastive training
is further explored in visual representation learning [30, 33, 38]
and views mining [1, 11]. Leveraging nearest sample to produce
pro views of sample mining is also proved effective in machine
translation [41] and language models [24]

5 CONCLUSION
In this paper, we propose a model-agnostic integrated cross-channel
(MIC) approach, semantically connecting users and items for the
matching stage of a typical industrial recommender system by
maximally leveraging the inherent multi-channel mutual informa-
tion. Specifically, MIC models correlation across user-item (U2I),
user-user (U2U), and item-item (I2I) channels via intra and inter
cross-channel contrastive modules. MIC naturally aligns users and
items with semantic similarity and distinguishes them otherwise in
each channel. Extensive experiments show that our MIC helps sev-
eral popular retrieval models boost performance on four real-world
benchmarks. By deploying on industrial Tencent News platform
with millions of users and conducting online experiments, we con-
firm the scalability and flexibility of the proposed method.
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