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Abstract

Integrated recommendation aims to jointly recommend het-
erogeneous items in the main feed from different sources via
multiple channels, which needs to capture user preferences on
both item and channel levels. It has been widely used in prac-
tical systems by billions of users, while few works concen-
trate on the integrated recommendation systematically. In this
work, we propose a novel Hierarchical reinforcement learn-
ing framework for integrated recommendation (HRL-Rec),
which divides the integrated recommendation into two tasks
to recommend channels and items sequentially. The low-level
agent is a channel selector, which generates a personalized
channel list. The high-level agent is an item recommender,
which recommends specific items from heterogeneous chan-
nels under the channel constraints. We design various rewards
for both recommendation accuracy and diversity, and propose
four losses for fast and stable model convergence. We also
conduct an online exploration for sufficient training. In exper-
iments, we conduct extensive offline and online experiments
on a billion-level real-world dataset to show the effectiveness
of HRL-Rec. HRL-Rec has also been deployed on WeChat
Top Stories, affecting millions of users. The source codes are
released in https://github.com/modriczhang/HRL-Rec.

1 Introduction
Personalized recommendation systems can help users to get
various types of information including news (Zheng et al.
2018), videos (Hidasi et al. 2016), products (Sun et al. 2019)
and tags (Liu et al. 2020c). Integrated recommendation is
proposed to simultaneously recommend these heterogeneous
items from different sources (i.e., channels) in a single rec-
ommendation system, which has been widely deployed by
real-world content providers such like WeChat Top Stories,
Google and Baidu Feed (Xie et al. 2020b). Fig. 1 gives a
classical architecture of a real-world integrated recommen-
dation. It first combines heterogeneous items from differ-
ent channels (e.g., article, video and news channels), and
then jointly ranks them in the main feed. Integrated rec-
ommendation is more convenient for information acquisi-
tion. Moreover, it greatly increases users’ choices on differ-
ent types/sources of information to meet user diverse prefer-
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ences on both item and channel levels, making the systems
more attractive and friendly.
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Figure 1: A real-world integrated recommendation system.

A good integrated recommendation system should pro-
vide user-interested, diversified and stable results from het-
erogeneous channels. However, integrated recommendation
faces more challenges than conventional homogeneous rec-
ommendation: (1) heterogeneous items from multiple chan-
nels usually have different features and ranking strategies. It
is extremely difficult to compare items in different channels
for joint ranking. (2) Users have personalized preferences on
both item and channel levels. The coarse-grained user pref-
erence on channels also has essential impacts on recommen-
dation. (3) Real-world integrated recommendation highly
values the online model stability. A small disturbance in one
channel (e.g., data or model updating) may result in serious
influences on the overall performances. Although integrated
recommendation is widely deployed in practice, there are
still few works focusing on these challenges systematically.
Currently, most real-world integrated recommendation sys-
tems jointly rank heterogeneous items with CTR-oriented
objectives and rule-based strategies. However, merely rely-
ing on CTR may lead to homogenization and biases in both
items and channels (e.g., videos usually have higher CTR
compared to articles), which will harm the channel diversity
and user experience eventually. Simple empirical rule-based
strategies will inevitably reduce the personalization.

To address these challenges and improve the overall per-
formance of integrated recommendation, we propose a novel
Hierarchical reinforcement learning framework for inte-
grated recommendation (HRL-Rec), which captures user
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preferences on both heterogeneous items and channels. Pre-
cisely, HRL-Rec models the integrated recommendation as
a list-wise recommendation, which contains two reinforce-
ment learning (RL) agents. The low-level agent is a channel
selector, which generates a personalized channel list accord-
ing to user channel-level preferences. In contrast, the high-
level agent works as an item recommender, which recom-
mends specific heterogeneous items under the channel con-
straints given by the channel selector. We design a new set of
rewards to measure both accuracy and diversity in this task,
and combine low- and high- level HRL losses, supervised
loss and unsupervised similarity loss for fast and stable train-
ing. We also conduct an online exploration as an unbiased
simulator. The advantages of HRL-Rec locate in three as-
pects: (1) the trial-and-error procedure, multiple losses and
the unbiased online exploration of RL help HRL-Rec to ef-
fectively find the optimum solutions. (2) HRL-Rec considers
multiple rewards to measure the accuracy, diversity and nov-
elty. It could relieve the homogenization issue in CTR-based
models. (3) The hierarchical structure decouples channel se-
lector and multi-channel item recommenders, which allevi-
ates the disturbances caused by small changes in a single
channel, making online system more stable. It also brings
flexibility in customization for each channel.

In experiments, we conduct extensive offline and online
evaluations for HRL-Rec with competitive baselines on a
real-world system WeChat Top Stories. The significant im-
provements in both accuracy and diversity confirm the effec-
tiveness of HRL-Rec in practice. Moreover, We further give
sufficient online and offline ablation tests, parameter anal-
yses and stability analyses to better understand our model.
The main contributions are concluded as follows:
• We systematically explore the integrated recommendation

task, and propose a novel HRL-Rec model. To the best
of our knowledge, we are the first to bring hierarchical
reinforcement learning in integrated recommendation.

• We propose a novel HRL framework specially for inte-
grated recommendation, which designs a new set of re-
wards for multiple objectives, combines HRL, supervised
and similarity losses for fast and stable training, and con-
ducts an online exploration for unbiased simulation.

• The offline and online evaluations, model analyses and
ablation tests verify the effectiveness and stability. Cur-
rently, HRL-Rec has been deployed on WeChat Top Sto-
ries, affecting millions of users.

2 Related Works
Recommendation System. Logistic regression (LR) (Peng,
Lee, and Ingersoll 2002) and Factorization machine (FM)
(Rendle 2010) are classical methods for recommendation.
Wide&Deep (Cheng et al. 2016) combines LR with DNN
components. DeepFM (Guo et al. 2017), NFM (He and Chua
2017) and AFM (Xiao et al. 2017) combine FM with DNN
or attention layers. AutoInt (Song et al. 2019), AFN (Cheng,
Shen, and Huang 2020) and AutoFIS (Liu et al. 2020a) are
proposed to better extract feature interactions. BERT4Rec
(Sun et al. 2019) and DFN (Xie et al. 2020a) are also pro-
posed for modeling user behavior sequences. In HRL-Rec,

we use GRU and self-attention for feature modeling in state
encoders, and compare with some strong baselines.

Reinforcement Learning (RL). Policy gradient (PG)
and Deep Q-network (DQN) are representative models for
policy-based and value-based RL approaches (Mnih et al.
2015; Chen et al. 2019a). Double (Van Hasselt, Guez, and
Silver 2016) and Dueling (Wang et al. 2016) strategies are
effective for DQN, while A3C (Mnih et al. 2016) and DDPG
(Lillicrap et al. 2016) successfully combine advantages in
both policy-based and value-based approaches. In this work,
we train HRL-Rec with DDPG.

RL in Recommendation. Recently, Zheng et al. (2018)
applies DQN to model long-term reward inferred from user
activeness. Zhao et al. (2018) conducts Actor-Critic in the
page-wise recommendation with neural reward simulators.
Adversarial training is also deployed to generate sufficient
training instances (Chen et al. 2019b), while Wang et al.
(2018) combines RL with supervised methods. Moreover,
(Chen et al. 2019a) improves PG with the top-k off-policy
correction, while (Ie et al. 2019) proposes the slate-based
Q-learning to model long-term value. Both methods have
achieved great improvements in online systems.

In contrast, there are only a few works that consider hier-
archical RL (HRL) in recommendation. (Zhang et al. 2019)
introduces HRL to alleviate noises in user behaviors, which
divides the MOOC recommendation into a profile reviser
and a basic recommender. (Zhao et al. 2020) uses HRL to
highlight high-quality but sparse rewards of conversion in
E-commerce, where the high-level agent is regarded as an
inductor of the low-level agent. Differing from these mod-
els, HRL-Rec focuses on the integrated recommendation
task, which aims to jointly consider user preferences on both
items and channels to rank heterogeneous items. To the best
of our knowledge, we are the first to bring HRL in integrated
recommendation. Existing HRL models in recommendation
(Zhang et al. 2019; Zhao et al. 2020) cannot be directly used
in our task, for they are specially designed for other purposes
with customized information (e.g., conversion).

3 Methodology
We propose HRL-Rec for integrated recommendation. As in
Fig. 1, multiple channels (i.e. data sources) are combined for
joint heterogeneous ranking. In this work, we focus on four
channels including news, article, long video and short video.

3.1 Problem Formulation and Model Overview
Integrated recommendation aims to simultaneously recom-
mend heterogeneous items from different channels in a sin-
gle system. Precisely, we define the integrated recommenda-
tion as a list-wise recommendation task. The inputs are het-
erogeneous items from different channels, and the output is
a recommended list (i.e., top 10 items) containing heteroge-
neous items from different channels. We use RL to address
this task. The agent (i.e., model) selects an action (i.e., rec-
ommending a channel or an item), and the environment (i.e.,
users) gives rewards (e.g., click, dwell time (Yi et al. 2014),
diversity, novelty). The agent then learns from the rewards
and updates the states. HRL-Rec aims to maximize the ex-
pected multi-aspect rewards of the overall list.
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Figure 2: The overall architecture of HRL-Rec.

Fig 2 shows the overall architecture of HRL-Rec, which
mainly consists of a channel selector and an item recom-
mender. The channel selector is regarded as the low-level
RL agent (LRA), which gives a coarse-grained channel rec-
ommendation with a channel list. The item recommender
is viewed as the high-level RL agent (HRA), which recom-
mends specific heterogeneous items under the channel con-
straints. We use the DDPG (Mnih et al. 2016) to model both
HRA and LRA, and define the key notions as follows:
• Low-level state sl: sl contains information of user pro-

files, user historical behaviors, recommendation contexts,
and recent channels impressions (impression indicates the
item/channel is exposed/shown to a user).

• Low-level action al: the low-level action is generating a
channel. al is viewed as the recommended channel.

• Low-level reward rl: the low-level reward rl is measured
by the click times of the corresponding channel.

• High-level state sh: sh contains information of user pro-
files, user historical behaviors, recommendation contexts,
recently item impression, and channel constraints.

• High-level action ah: the high-level action is generating
an item. ah is viewed as the recommended item.

• High-level reward rh: the high-level reward derives from
four factors, including item click times, dwell time, list-
level diversity and item novelty, measuring recommenda-
tion accuracy, diversity and novelty in item level.

• Discount factor γ: the discount factor γ ∈ [0, 1] mea-
sures the importance of future rewards to the current state.

When recommending the t-th item in the final item list, LRA
first observes the low-level state slt and gives an action alt to
recommend a channel ct in the t-th position. Second, HRA
the high-level state sht and generates the high-level action
aht indicating the specific item dt in channel ct. Third, the
environment receives ct and dt, and sends both low-level
and high-level rewards rlt and rht back to the agents. Finally,
both states are updated with corresponding state transitions.

The two-step HRL can (1) learn user preferences on both
items and channels for joint recommendation with heteroge-
neous items (verified in Sec. 4.4), (2) consider multi-aspect
rewards that measure both accuracy and diversity in online
scenarios (verified in Sec. 4.5), and (3) decouple channel se-
lector and each item recommender, which assures the stabil-
ity in online systems (verified in Sec. 4.8). In the following

sections, we further introduce the details and advantages of
all components in HRL-Rec (see Sec. 4.5, 4.6 and 4.7).

3.2 Channel Selector (LRA)
The LRA is a channel selector to generate channel lists with
the classical Actor-Critic framework (Lillicrap et al. 2016).

Low-level State Encoder The t-th low-level state slt aims
to capture (1) user historical impressed channels, (2) user
profiles, and (3) previous t − 1 items HRL-Rec has already
recommended in the list. Therefore, different from existing
HRL models (Zhao et al. 2020), we use the impression be-
havior sequence instead of the click sequence as inputs. Pre-
cisely, when predicting the t-th channel, we use the m most
recent impressed behaviors before the t-th position to form
the input feature sequence, noted as seqlt = {f l1, · · · , f lm}.
The former m − t + 1 behaviors are the recent historical
channel impressions, while the latter t− 1 behaviors are the
channels already predicted by LRA in the current list.

The i-th feature embedding f li is generated by four groups
of raw features: (a) user long-term profiles, (b) recommenda-
tion contexts, (c) current channel features, and (d) cumula-
tive channel features in recent impressions. Following (Song
et al. 2019), we divide these raw feature groups into n fea-
ture fields to form the input feature matrix F̂li ∈ Rn×dh . We
conduct a multi-head self-attention to model feature interac-
tions between n fields of the i-th behavior, and concatenate
n interacted field features to get f li as follows:

f li = Concat(Transformer(F̂li)), f li ∈ Rndh . (1)

The recent impressed items and channels are essential to
represent the state in list-wise recommendation. Therefore,
we use RNN with Gated recurrent units (GRU) (Hidasi et al.
2016) as the sequential state encoder, and set the initial state
as user profiles. We conduct GRU on the input sequence seqlt
to represent the t-th low-level state embedding slt as:

slt = GRU(seqlt) = GRU(f l1, · · · , f lm−t+1, · · · , f lm). (2)

GRU(seqlt) is the last hidden state in GRU. We propose a
novel state encoder specially for integrated recommendation
to capture useful information at the channel level. The state
embedding slt learns list-level information from two aspects,
including the hidden states of sequence-based model and the
cumulative channel features functioned as a short path.

Low-level Actor The low-level Actor generates actions to
represent channels according to the low-level state embed-
dings. Specifically, we feed slt into a fully connected layer to
generate the t-th low-level action embedding alt as:

alt = tanh(Wl
a · slt + bla). (3)

alt is viewed as the virtual channel embedding recommended
by LRA. We calculate the cosine similarities between alt and
all item candidates in multiple channels, and directly regard
the channel of the most similar item as the predicted channel
ct. Note that we choose item embeddings instead of channel
embeddings to calculate similarity with alt, since the fine-
grained item embeddings are more precise to represent user
preferences on channels than the coarse-grained channel em-
beddings. ct is viewed as the channel constraint in HRA.



Low-level Critic The low-level Critic aims to calculate
the Q value which represents the total reward after generat-
ing a channel. The low-level Q value evaluates the expected
low-level return of the overall list, which is formalized as:

Ql(slt, a
l
t) = Eslt+1,r

l
t∼E [r

l
t + γQl(slt+1, a

l
t+1)]. (4)

rlt is the low-level reward from the t-th channel, which indi-
cates the number of the channel ct being clicked in the t-th
position. In this case, LRA can capture user’s coarse-grained
preferences in channel level at each position. γ ∈ [0, 1] is a
discount factor. This discount factor considers the influence
brought by position bias in practice, which enables LRA to
pay more attention to the items with higher ranks.

Specifically, we use a fully connected layer to estimate the
Ql as ql. In the t-th position, the Critic inputs the low-level
state slt and the virtual action alt to predict the current Q as:

ql(slt, a
l
t) = ReLU(wl>

c1 · slt +wl>
c2 · alt + blc), (5)

where wl
c1 and wl

c2 are weighting vectors and blc is the bias.
The Q value given by Critic is then used to guide the update
in Actor and Critic, which will be introduced in Sec. 3.4.

3.3 Item Recommender (HRA)
The HRA aims to recommend a heterogeneous item list un-
der the channel constraints generated by LRA.

High-level State Encoder The state encoder in HRA fo-
cuses more on fine-grained item-level features and impres-
sions instead of channel-level features. Similar to LRA, the
input feature sequence seqht is also formed by the m-most
recent impressed behaviors as seqht = {fh1 , · · · , fhm}. fhi is
built from the similar feature groups in f li , where the current
and cumulative channel features are replaced with the corre-
sponding item features. Taking the similar feature field ma-
trix F̂hi as input, we calculate fhi via the Transformer used in
Eq. (1) as fhi = Concat(Transformer(F̂hi )) for feature in-
teraction. Finally, we conduct another GRU model to learn
the high-level state embedding sht = GRU(seqht ) from re-
cent item impression sequences.

High-level Actor The high-level Actor generates actions
to recommend heterogeneous items in different channels un-
der the hard channel constraint ct given by LRA. In this case,
the t-th item could only be selected from the ct channel. We
also conduct a fully connected layer as:

aht = tanh(Wh
a · sht + bha). (6)

aht is the virtual action embedding given by HRA. We then
retrieve the most similar item dt of aht in channel ct with
cosine similarity, and regard dt as the recommended item.

High-level Critic The high-level Critic aims to measure
the total reward when Actor predicts an item. The high-level
Q value Qh(sht , a

h
t ) of expected return is calculated simi-

lar as Eq. (4) with the high-level reward rht . To jointly con-
sider recommendation accuracy, diversity and novelty, rht
contains four rewards related to different core indicators in
list-wise integrated recommendation: (1) rclickt indicates the

number of the item dt being clicked by users, which directly
optimizes the click-related objective. (2) rtimet measures the
dwell time (i.e., user’s reading time) of dt (Yi et al. 2014),
which can reveal user’s true satisfaction. (3) rdivert measures
the recommendation diversity with the increments of dedu-
plicated tags/categories brought by the t-th item compared
to existing t − 1 items in the current list. (4) rnovelt eval-
uates the novelty with the numbers of new tags/categories
in the t-th item compared to those already in user’s long-
term content profiles. The former two rewards focus on user
short-term click-related performances, while the latter two
rewards focus on diversity and novelty, which help to im-
prove user long-term experience. The final aggregated high-
level reward rht is the combination of four rewards as:

rht =

4∑
i=1

(rti + bri )
λ
ct
i , rt = {rclickt , rtimet , rdivert , rnovelt }.

(7)

bri is the bias and λcti is the weight. Heterogeneous chan-
nels usually emphasise different rewards in practice. Hence,
we set channel-specific reward weights λcti that vary with
channel constraint ct. We conduct a fully connected layer to
estimate the Q value qh(sht , a

h
t ) with aht and sht as:

qh(sht , a
h
t ) = ReLU(wh>

c1 · sht +wh>
c2 · aht + bhc ), (8)

where wh
c1 and wh

c2 are weighting vectors and bhc is the bias.

3.4 Multi-aspect Objectives in HRL-Rec
To ensure the rapid and stable convergence of HRL-Rec, we
design a multi-aspect objective jointly modeling four losses,
including (1) LRA loss, (2) HRA loss, (3) CTR-oriented su-
pervised loss, and (4) similarity loss. In training, we utilize
DDPG (Lillicrap et al. 2016) to train the Actors and Crit-
ics in both agents with off-policy strategy. We also adopt the
double strategy (Van Hasselt, Guez, and Silver 2016).

LRA loss. In LRA, we adopt the classical mean squared
loss (MSE) to train the low-level Critic as follows:

L(θl) = Eslt,rlt∼E [(y
l
t −Ql(slt, alt|θl))2],

ylt = rl(slt, a
l
t) + γQl(slt+1, π

l(slt+1|φl
′
)|θl

′
).

(9)

ylt is the target Q value at t that consists of the current reward
rl and the future Q value from the target network. θl and θl

′

are the parameters of the online and target low-level Critics.
θl is updated during training, while θl

′
is the previous expe-

rience parameter set fixed during optimization. πl(slt+1|φl
′
)

represents the target policy of the low-level Actor.
Similar to DDPG, the Q value generated by Critic is used

to update the Actor with policy gradient. We maximize the
overall list-wise expected return, aiming to generate actions
with higher Q values. HRL-Rec learns the parameter φl of
our low-level Actor by the loss L(φl) as follows:

L(φl) = Esl∼E,al=µl(sl|φl)[−Ql(sl, al|θl)]. (10)

al = µl(sl|φl) indicates the virtual action embedding in Eq.
(3) generated by the deterministic policy of low-level Actor.
Finally, the LRA loss Ll is aggregated as follows:

Ll = L(θl) + βL(φl). (11)



β is a hyper-parameter of weight empirically set as 1.
HRA loss. In HRA, we build the MSE loss for the high-

level Critic similarly to Eq. (9) as follows:
L(θh) = Esht ,rht ∼E [(y

h
t −Qh(sht , aht |θh))2],

yht = rh(sht , a
h
t ) + γQh(sht+1, π

h(sht+1|φh
′
)|θh

′
).
(12)

θh and θh
′

are parameters of the online and target network
in high-level Critic. The loss of high-level Actor is also as:

L(φh) = Esh∼E,ah=µh(sh|φh)[−Qh(sh, ah|θh)]. (13)
µh is the policy of high-level Actor in Eq. (6). Finally, we
add both losses in Actor and Critic to form the HRA loss:

Lh = L(θh) + βL(φh). (14)
In model training, to enhance the robustness of HRL, we

further add Gaussian noises an ∼ N(0, σ2) to both ac-
tion embeddings in Eq. (3) and Eq. (6). The Gaussian noise
brings randomness in training, and thus could improve the
generalization ability and robustness of our model.

CTR-oriented supervised loss. In practice, it is challeng-
ing for RL to fast converge since it usually has large gradi-
ent variances (especially for hierarchical RL). HRL models
may lost in optimization due to the natural sparsity of click
behaviors compared to the tremendous search space. There-
fore, we bring in supervised information to jointly guide the
HRL-Rec in training. We design a CTR-oriented supervised
loss Lc with the predicted high-level and low-level actors a
and the corresponding real item d̂ displayed to user u as:

Lc = −
∑
d̂∈Cu

log(f(a, d̂))−
∑
d̂/∈Cu

log(1− f(a, d̂)). (15)

d̂ ∈ Cu indicates d̂ is clicked by user u. f(a, d̂) is the pre-
dicted click probability with a and d̂, represented as:

f(a, d̂) = sigmoid(w>f · concat(a, d̂) + bf ). (16)
wf is a weighting vector and bf is a bias. Lc aims to build
implicit relations between the virtual actions and their cor-
responding real clicked items. It directly optimizes the high-
level and low-level Actors via click-based supervised infor-
mation, which could make the training more robust and ac-
celerate model convergence in HRL training.

Similarity loss. We further design a similarity loss Ls in
both LRA and HRA with the virtual action a and its most
similar item d given by Actors as follows:

Ls = −
∑
(a,d)

cosine similarity(a,d). (17)

Ls attempts to make actions (i.e., virtual items and channels)
generated by Actors closer to their most similar real items,
which forces Actors to generate more realistic actions.

Finally, we combine all four losses to get the final loss as:
L = λlLl + λhLh + λcLc + λsLs. (18)

We empirically set the loss weights λl : λh : λc : λs = 5 :
5 : 1 : 1 according to model performances. For fast and sta-
ble convergence, we update Critics with a higher frequency
(usually 5 to 30 times) than Actors, and also conduct a dis-
tributed learning with asynchronous gradient optimization
(Mnih et al. 2016). HRL-Rec can be trained within 3 hours.

3.5 Online Exploration
Most RL-based methods mainly rely on simulators for ex-
ploration (Zhao et al. 2020). However, simulator-based RL
in recommendation seriously suffers from noises and over-
fitting, for there are gaps between simulated and real feed-
backs. Differing from simulator-based RL, we adopt the ε-
greedy strategy (Mnih et al. 2015) in online system as an
online exploration, which randomly generates “surprising”
items from the input item candidates in HRL-Rec (i.e., top
200 items in different channels). These items are impressed
to real-world users, and thus have unbiased user feedbacks
to be collected as exploration for offline training.

The feasibility and advantages of using online exploration
instead of simulators are as follows: (1) our online system is
widely used by millions of users. The RL with online ex-
ploration and additional supervised training assure the suf-
ficient training of HRL-Rec. (2) Simulators inevitably bring
in inaccurate and biased rewards, while all explorations in
HRL-Rec are evaluated by real users. (3) The qualities of
online exploration are acceptable, since the “randomly” se-
lected items are top 200 items ranked by the previous match-
ing module. The online exploration will not harm user expe-
rience in the long term. In online, we regard the most similar
item of the predicted action in HRA as the final result.

4 Experiments
4.1 Datasets
Since HRL-Rec relies on online exploration and there is no
large-scale dataset for our setting, we build a new dataset
IRec-4B from a real-world integrated recommendation sys-
tem named WeChat Top Stories. We randomly select 22.5
million users and collect nearly 141 million sessions from
their logs. These sessions contain million-level deduplicated
items from news, article, long video and short video chan-
nels, generating 3.8 billion impression instances. We split
these instances into a train set and a test set using the chrono-
logical order. All data are preprocessed via data masking to
protect user privacy. Table 1 shows the statistics of IRec-4B.

#user #session #click #impression

22,527,380 140,982,284 355,019,232 3,770,955,760

Table 1: Statistics of the IRec-4B dataset.

4.2 Competitors
We implement several competitive models as baselines. The
competitors include conventional LR (Peng, Lee, and Inger-
soll 2002) and FM (Rendle 2010) models. For deep models,
we implement Wide&Deep (Cheng et al. 2016), NFM (He
and Chua 2017), AFM (Xiao et al. 2017), DeepFM (Guo
et al. 2017) and AutoInt (Song et al. 2019), which are widely
confirmed in industry. Note that we cannot directly use ex-
isting HRL models in recommendation (Zhang et al. 2019;
Zhao et al. 2020) for they are designed for different tasks
with customized feedbacks. All baselines can use the same
features also used in HRL-Rec if necessary, and are trained
under the classical CTR-based cross entropy loss.



4.3 Experimental Settings
HRL-Rec takes top 200 items in each channel as inputs and
output top 10 heterogeneous items. The maximum length
of input sequence is 50 for both agents. The dimensions of
the aggregated feature embeddings and the item/channel em-
beddings are 128 and 32. We utilize a 4-head self-attention,
and set the discount factor as γ = 0.3. The channel-specific
high-level reward weights λcti are set flexibly and empiri-
cally according to the specific online requirements. In train-
ing, we use Adam for optimization with the batch size set as
256. We conduct a grid search for parameter selection. All
models share the same features and experimental settings.

4.4 Offline Evaluation
Evaluation Protocols Integrated recommendation jointly
provides heterogeneous items. Hence, we evaluate all mod-
els on the CTR prediction task in IRec-4B. We use the classi-
cal Area Under Curve (AUC) for offline evaluation. Follow-
ing (Yan et al. 2014), we also bring in RelaImpr to measure
the relative improvements over the base model (i.e., LR).

model AUC RelaImpr

LR (Peng, Lee, and Ingersoll 2002) 0.7311 0.00%
FM (Rendle 2010) 0.7585 11.86%
NFM (He and Chua 2017) 0.7620 13.37%
AFM (Xiao et al. 2017) 0.7686 16.23%
Wide&Deep (Cheng et al. 2016) 0.7801 21.20%
DeepFM (Guo et al. 2017) 0.7819 21.98%
AutoInt (Song et al. 2019) 0.7837 22.76%

HRL-Rec (ours) 0.8097 34.01%

Table 2: Results of offline evaluation on IRec-4B.

Experimental Results In Table 2 we can find that:
(1) HRL-Rec significantly outperforms all baselines with

the significance level α = 0.01. The improvements verify
that HRL-Rec can capture both item-level and channel-level
user preferences to rank heterogeneous items.

(2) The improvements of HRL-Rec mainly derive from
three aspects: (a) the hierarchical RL structure decouples
channel selector and item recommender, guiding the model
to learn both item-level and channel-level user preferences.
(b) The trial-and-error of RL, online exploration and multi-
aspect loss help HRL-Rec to effectively find the optimum
selections. (c) The high-level reward considers recommen-
dation accuracy, diversity and novelty from different aspects,
which improves both short-term and long-term experiences.

4.5 Online A/B Tests
Evaluation Protocols We evaluate HRL-Rec on WeChat
Top Stories. Precisely, we deploy HRL-Rec with different
RL methods in the ranking module with other modules un-
changed. The online base model is a supervised LR model
with rule-based strategies for channels. In online evaluation,
we focus on three representative metrics including Click-
through-rate (CTR), average click number per capita (ACN)

and average watched tag per capita (AWT) to model rec-
ommendation accuracy and diversity. The online evaluation
could be viewed as an online ablation test.

RL models CTR ACN

DQN (LR) +4.17% +3.72%
DQN (GRU) +5.27% +4.77%
Double-Dueling-DQN +5.40% +5.41%
DDPG +5.80% +7.82%
DDPG (hierarchical) +6.07% +10.43%

HRL-Rec (final) +6.34% +11.67%

Table 3: Online A/B test on WeChat Top Stories.

Experimental Results We conduct the online A/B test for
5 days. Table 3 shows the improvement percentages over the
base model. We can observe that:

(1) HRL-Rec significantly outperforms the online base-
line and other RL versions on both CTR and ACN metrics.
CTR measures the point-wise accuracy. In contrast, ACN in-
dicates both accuracy and user activeness in online list-wise
recommendation, which we care more about. In HRL-Rec,
we utilize the click number as the dominating reward in both
agents, since we hope users to click more items. Hence, we
achieve more significant improvements in ACN.

(2) Comparing with different RL models from DQN (LR)
to HRL-Rec, we can find that: (a) DQN performs better than
the LR/rule-based baseline. (b) GRU outperforms LR as the
state encoder in RL models. (c) Double and Dueling strate-
gies are effective in DQN for our task. (d) Actor-Critic based
models such as DDPG could help model optimization and
relieve large gradient variance issue. (e) The hierarchical RL
structure can decouple the channel selector and item recom-
mender, which is beneficial for integrated recommendation.
(f) The supervised lossLc further improves the performance.

(3) We further analyze the improvements in diversity with
average watched tag per capita (AWT). We add the diver-
sity and novelty rewards rdiver and rnovel to the last two RL
models. Hence, the AWT gets 1.98% increase from DDPG
to DDPG (hierarchical) and HRL-Rec. A good recommen-
dation diversity could improve user’s long-term experience.

4.6 Ablation Tests
We conduct ablation tests to verify the effectiveness of dif-
ferent components in HRL-Rec. Table 4 shows the results of
various ablation settings. We find that: (1) both self-attention
(for feature field interaction) and GRU (for sequence en-
coding) are essential in two state encoders. Here we replace
GRU and self-attention with fully-connected layers and av-
erage pooling as ablation settings. (2) γ = 0 indicates that
HRL-Rec will not consider any future rewards at each po-
sition of the list-wise recommendation. It implies the effec-
tiveness of future rewards in list-wise recommendation. (3)
Both Ls and Lc are indispensable in our model. It is because
that the similarity loss helps Actors to generate more real-
istic items and channels, while the supervised loss directly
optimizes HRL-Rec with CTR. Besides the AUC improve-
ments, the more important necessity of these two losses is



that they can help to improve the stability of the training,
ensuring the rapid and stable convergence in HRL.

Task AUC RelaImpr

HRL-Rec 0.8097 34.01%

– GRU 0.7879 24.58%
– self-attention 0.8065 32.63%
– future rewards (γ = 0) 0.7967 28.39%
– similarity loss Ls 0.8045 31.76%
– supervised click loss Lc 0.8032 31.20%

Table 4: Ablation tests on IRec-4B dataset.

4.7 Model Analyses
Analysis on Discount Factor γ We first evaluate HRL-
Rec with different γ to analyze the impacts of discount fac-
tors on the performances. Fig. 3 (a) shows the AUC with
different γ: (1) in general, the AUC increases first and then
decreases as γ grows from 0 to 1. HRL-Rec reaches the best
performance when γ = 0.3. It is natural since the future re-
wards in HRL-Rec reflect the accuracy or diversity factors
of items with lower ranks in the recommended list, which
should be considered less important when measuring cur-
rent states. Small γ also appears in other recommendation
tasks (Zheng et al. 2018; Xin et al. 2020; Liu et al. 2020b).
(2) γ = 0 indicates that HRL-Rec merely considers instant
rewards brought by the current action, ignoring any future
rewards (e.g., list-wise clicks and diversity). The improve-
ment verifies the significance of future rewards.

Analysis on Input Sequence Length We further explore
the model performance with different maximum input se-
quence length of seql and seqh in Fig. 3 (b). We find that:
(1) the AUC first increases and then decreases with the se-
quence length from 5 to 100. HRL-Rec achieves the best per-
formance when the length equals 50. (2) The AUC increases
sharply at the beginning, which indicates that the impressed
items in user historical behaviors are helpful to model the
current state. The AUC decreases slowly from 50 to 100,
which reveals the side effects of considering too long-term
behaviors in list-wise recommendation.
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Figure 3: Results of parameter analyses.

4.8 Online Model Stability
In real-world integrated recommendation, online model sta-
bility is an essential factor that severely impacts user experi-
ence. However, heterogeneous items from multiple channels

bring in diversity as well as instability. Any change of data
or model in a certain channel may lead to a huge disturbance
in the overall results, which will harm the user experience.

We assume that a practical and robust integrated recom-
mendation system should have a stable channel proportion
with daily model and data updates. Hence, we use the stabil-
ity of channel proportion to evaluate the online model stabil-
ity. In Fig. 4, we draw the trend chart of the proportions of
different channels in the total. We compare HRL-Rec with
DQN on video and news channels, where both models need
daily updates. Since the channel proportions varies regularly
with different days and times, we compare with the same
time (e.g., Sat. 16:00) in two adjacent weeks. We observe
that the channel proportion trend in DQN differs in adja-
cent weeks. The max and average relative changes can even
reach 18.0% and 11.7% in video channel. In contrast, our
HRL-Rec is much more stable after model update. Its max
and average relative changes are only 4.5% and 1.4% in
video channel. It is because that (1) HRL-Rec has success-
fully learned user preferences on channels (which are sta-
ble), and (2) HRL-Rec decouples channel selector and item
recommender with different parameters and rewards. Hence,
it could smooth the channel proportion jitters caused by dis-
turbances from biased data or unbalanced model, and thus
can enhance user experience and increase user stickiness.
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Figure 4: The trend chart of different channel proportions in
two adjacent weeks with daily model and data updates.

5 Conclusion and Future Work
In this work, we highlight integrated recommendation and
propose a new HRL-Rec, which is divided into channel se-
lection and item recommendation with multiple rewards and
losses. We conduct extensive offline and online experiments
and achieve significant improvements. HRL-Rec has been
deployed on WeChat Top Stories, affecting millions of users.

In the future, we will explore more effective rewards and
complicated HRL frameworks. We will further use the off-
policy correction in online exploration for better exploration.
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